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Abstract

Here we present additional material such as proofs, a description of the numerical solution

algorithm, calibration details, and further simulation results and robustness checks.
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A Solution Approach

In order to give a unified description of the solution procedure, Appendices A and B show the solu-

tion procedure for the extended model of section 5. In particular, the derivations include the three-

dimensional Markov chain X “ pX p, X t, X cq and climate-related disasters.

A.1 Hamilton-Jacobi-Bellman Equation

Applying the Bellman principle in continuous time, the value function J “ Jpt,K1,K2,T,Xq solves a

non-linear partial differential equation, which is typically refered to as Hamilton-Jacobi-Bellman equa-

tion (e.g., Duffie and Epstein 1992b). This equation is given by

0 “ max
D,Fn,Gn,In,R

"

Jt `δθJ
´

`
ř

n“1,2rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs
˘1´1{ψ

rp1´γqJs
1´1{ψ

1´γ

´1
¯

` JTϑpXq
`

νtrF1 ` F2s´ D
˘

`
1
2

JTTσ
2
T ` JK1

´

I1 ´
1
2
φ1

I2
1

K1
` R ´

1
2
κ

R2

K1
´δk

1K1

¯

(A.1)

`
1
2

JK1K1 K2
1σ

2
1 ` JK2

´

I2 ´
1
2
φ2

I2
2

K2
´ R ´δk

2K2

¯

`
1
2

JK2K2 K2
2σ

2
2 ` JK1K2 K1K2σ1σ2ρ12

`
ÿ

i“c,e

λipT,XqE
“

JpK1Zi,K2Zi,T,Xq´ J
‰

`
ÿ

x‰X
λxpS,T,X, xq

“

JpK1,K2,T, xq´ J
‰

*

,

subject to the constraints D,Fn,Gn, In,R ě 0. Subscripts of J denote partial derivatives, e.g., JK1 “ BJ
BK1

.

A.2 Optimal Carbon Tax and Negative Emission Technology

The first-order condition for optimal fossil fuel use is

fCpC, Jq

´

BYn

BFn
´ b f

¯

“ ´JTϑpXqνt.

Setting the marginal product of fossil fuel equal its marginal cost b f plus the external costs of emitting

greenhouse gases into the atmosphere,

BYn

BFn
“ b f `τ f .

The optimal Pigouvian social cost for using one unit of fossil fuel is thus

τ f “ ´
ϑpXqνtJTC1{ψ

δrp1´γqJs1´1{θ
.
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Taking the different units between fossil fuel and carbon emissions into account, the SCC is

τ“ ´
ϑpXqJTC1{ψ

δrp1´γqJs1´1{θ
. (A.2)

Since ς1 `ς2 “ 1, the first-order conditions for optimal carbon removal give

fCpC, Jq
BbdpS,X,D,Kq

BD
“ ´JTϑpXq.

A.3 Share of Brown Capital

To solve the Hamilton-Jacobi-Bellman equation (A.1), we first transform it by expressing the decision

variables in relative terms and reducing the number of state variables by one. Let gn “ Gn{Kn, fn “

Fn{Kn, in “ In{Kn, r “ R{K1 denote the relative control variables. Exploiting the homogeneity property

of bd, we use the notation b̃dpS,X,Dq “ bdpS,X,D,Kq{K . We express the value function in terms of total

capital K “ K1 ` K2 and share of brown capital S “ K2{pK1 ` K2q (instead of K1 and K2). Besides, we

set c “ C{K . Using the notation S1 “ 1´ S, S2 “ S, the production functions can then be expressed as

Yn “ AnSnK
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq.

The amounts of consumption goods produced by each sector are

Cn “ SnK
”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςnpSq

Sn
b̃dpS,X,Dq

ı

.

Therefore,

c “ A1p1´ Sq
`

κ1,1 gρ1
1 `κ2,1 f ρ1

1

˘

η1
ρ1Λ1pT,Xq` A2S

`

κ1,2 gρ2
2 `κ2,2 f ρ2

2

˘

η2
ρ2Λ2pT,Xq´ i1p1´ Sq´ i2S

´ bgpSqrg1p1´ Sq` g2Ss´ b f pSqr f1p1´ Sq` f2Ss´ b̃dpS,X,Dq.

The dynamics of the state variables can be written as

dK1 “ K1´

”´

i1 ´
1
2
ϕ1 i2

1 ` r ´
1
2
κr2 ´δk

1

¯

dt `σ1dW1 ´
ÿ

i“c,e

ℓidNi

ı

,

dK2 “ K2´

”´

i2 ´
1
2
ϕ2 i2

2 ´ r
1´ S

S
´δk

2

¯

dt `σ2

´

ρ12dW1 `

b

1´ρ2
12dW2

¯

´
ÿ

i“c,e

ℓidNi

ı

,

dT “ ϑ̂pt,Xqr f1p1´ Sq` f2Ssdt ´ϑpXqD dt `σTdW3 `κT´dX c,
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where ϑ̂pt,Xq “ ϑpXqK0e
şt

0 gνpsqds. To shorten the notation, we write W “ pW1,W2,W3qJ and denote the

drift of the capital stocks and temperature by µK i and µT , respectively. The dynamics of K and S can

be calculated using Ito’s lemma:

dS “ Sp1´ Sq

”

µSpi1, i2, r,Sqdt `pσ2ρ12 ´σ1qdW1 `σ2

b

1´ρ2
12dW2

ı

,

dK “ K´

”

µK pi1, i2, r,Sqdt `rp1´ Sqσ1 ` Sσ2ρ12sdW1 ` Sσ2

b

1´ρ2
12dW2 ´

ÿ

i“c,e

ℓidNi

ı

,

where the drift rates are given by

µSpi1, i2, r,Sq “µK1 ´µK2 ` Spσ1σ2ρ12 ´σ2
2q`p1´ Sqpσ2

1 ´σ1σ2ρ12q,

µK pi1, i2, r,Sq “ p1´ SqµK1 ` SµK2 .

A.4 Separation and Reduced-Form Value Function

We solve a modified HJB equation with finite differences in terms of only three (S,T,X) instead of four

state variables (K1,K2,T,X). For this to be possible, we must assume that the transition intensities

λℓpS, i, jq depend on S and T but not explicitly on K1 and K2. The following proposition summarizes

our findings for the PIGOU state. The situation for the CAP state is discussed in Corollary A.3.

Proposition A.1 (Value Function and Optimal Controls in the PIGOU state). Let ϑ̂pt,Xq “ϑpXqK0e
şt

0 gνpsqds.

Suppose that there is no temperature cap in the current state. The value function (2.6) then has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q1´γV

`

t,T,SpK1,K2q,X
˘

. (A.3)

where V satisfies a certain HJB equation which is given in (A.12) below. Optimal consumption is

c “
ÿ

n“1,2
Sn

”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςn

Sn
b̃dpS,X,Dq

ı

. (A.4)

Optimal energy use is

g1 “

´ bgpSq

η1 A1
`

κ1,1 `κ2,1zρ1
˘

η1
ρ1

´1
Λ1pT,Xqκ1,1

¯
1

η1´1
, f1 “ g1z1, (A.5)

g2 “

´ bgpSq

η2 A2
`

κ1,2 `κ2,2zρ2
˘

η2
ρ2

´1
Λ2pT,Xqκ1,2

¯
1

η2´1
f2 “ g2z2, (A.6)
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where

z1 “

´ κ1,1

κ2,1bgpSq

¯
1

ρ1´1
”

b f pSq´
VT ϑ̂pt,Xqp1´ Sq

“

p1´γqV ´VSS
‰

r1´ϕ1 i1s

ı
1

ρ1´1
,

z2 “

´ κ1,2

κ2,2bgpSq

¯
1

ρ2´1
”

b f pSq´
VT ϑ̂pt,XqS

“

p1´γqV ´VSS
‰

r1´ϕ1 i1s

ı
1

ρ2´1

The condition for the optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.7)

and optimal investment and carbon removal solves the nonlinear system

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV ´VSS
‰

r1´ϕ1 i1s, (A.8)

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2 i2s, (A.9)

δp1´γqV 1´1{θc´1{ψ “ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
, (A.10)

The optimal carbon tax is

τ“
ϑpXqc1{ψ

δpγ´1q

VT

V 1´1{θ
K . (A.11)

Proof. Let in “ In{Kn, fn “ Fn{Kn, gn “ Gn{Kn, r “ R{K1 denote the control variables in relative

terms. Substituting these relative controls into (A.1) leads to the HJB equation:

0 “ sup
D,in, fn,gn,r

!

Jt `
δ

1´1{ψ
rp1´γqJs1´1{θ

´

ÿ

n“1,2
rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs

¯1´1{ψ

´δθJ ` JK1 K1
`

i1 ´
1
2
ϕ1 i2

1 ` r ´
1
2
κr2 ´δk

1
˘

` JK2 K2
`

i2 ´
1
2
ϕ2 i2

2 ´ r
K1

K2
´δk

2
˘

`
1
2

JK1K1 K2
1σ

2
1 `

1
2

JK2K2 K2
2σ

2
2 ` JK1K2 K1K2σ1σ2ρ12 ` JTrϑ̂p f1S1 ` f2S2q´ϑDs` JTT

1
2
σ2

T

`
ÿ

i“c,e

λipTqErJpK1Zi,K2Zi,T,Xq´ Js`
ÿ

x‰X

λxpS,T,X, xq
“

JpK1,K2,T, xq´ J
‰

)

We conjecture that the value function has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q1´γV

`

t,T,SpK1,K2q,X
˘

.
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The partial derivatives of S are SK1 “ ´ S
K , SK2 “ 1´S

K . This specification implies39

V pt,T,S,Xq ą 0, VTpt,T,S,Xq ą 0.

The relevant partial derivatives of the value function J are

JK1 “ K´γV `
1

1´γ
K1´γVS

´S
K

,

JK1K1 “ ´γK´γ´1V `2K´γVS
´S
K

`
1

1´γ
K1´γ

”

VSS
S2

K2 `2VS
S

K2

ı

,

JK2 “ K´γV `
1

1´γ
K1´γVS

1´ S
K

,

JK2K2 “ ´γK´γ´1V `2K´γVS
1´ S

K
`

1
1´γ

K1´γ
”

VSS
p1´ Sq2

K2 ´2VS
1´ S
K2

ı

,

JK1K2 “ ´γK´1´γV ` K´γVS
1´2S

K
`

1
1´γ

K1´γ
”

VSS
´p1´ SqS

K2 `VS
2S ´1

K2

ı

,

JT “
1

1´γ
K1´γVT .

The aggregator is given by f pC, Jq “ K1´γ
“

δθV 1´1{θc1´1{ψ´δθV
‰

. Substituting the conjecture and its

partial derivatives into the HJB equation leads to the following reduced-form HJB equation

0 “ sup
D, fn,,gn,in,r

!

Vt ` M0 ` M1V ` M2VS ` M3VSS ` M4VT ` M5VTT

)

(A.12)

We introduce the three-dimensional volatility vectors

σkpSq “
`

p1´ Sqσ1 ` Sσ2ρ12, Sσ2

b

1´ρ2
12, 0

˘J, (A.13)

σs “
`

σ2ρ12 ´σ1, σ2

b

1´ρ2
12, 0

˘J. (A.14)

The coefficients Mℓ (ℓ“ 1, . . . ,5) are given by

M0 “ δθV 1´1{θc1´1{ψ`
ÿ

x‰X
λxpS,T,X, xqV pt,T,S, xq,

M1 “ p1´γq

”

p1´ Sqµ1 ` Sµ2
loooooooomoooooooon

“µk

´
1
2
γrp1´ Sq2σ2

1 ` S2σ2
2 `2Sp1´ Sqσ1σ2ρ12

loooooooooooooooooooooooomoooooooooooooooooooooooon

“}σk}2

s

ı

`
ÿ

i“c,e

λipTqErp1´ℓiq
1´γ´1s´

ÿ

x‰ X
λxpS,T,X, xq´δθ,

39The sign of VSpt,T,S,Xq is ambiguous because S indicates how CO2 intensive the economy is but also how much the econ-
omy is diversified, see Hambel et al. (2024) for an extensive discussion about the interaction of abatement and diversification
motives.

A-5



M2 “ Sp1´ Sq

´

µ2 ´µ1 ´γ
“

Sσ2
2 ´p1´ Sqσ2

1 `p1´2Sqσ1σ2ρ12
loooooooooooooooooooooomoooooooooooooooooooooon

“σJ
k σs

‰

¯

,

M3 “
1
2

p1´ Sq2S2“σ2
1 `σ2

2 ´2σ1σ2ρ12
looooooooooomooooooooooon

“}σs}2

‰

,

M4 “ ϑ̂pt,Xqr f1p1´ Sq` f2Ss´ϑpXqD,

M5 “
1
2
σ2

T ,

where c is given in (A.4) and ϑ̂pt,Xq “ ϑpXqK0e
şt

0 gνpsqds. Calculating the first-order conditions leads to

the system of equations (A.5) – (A.9), which determine the optimal controls. The optimal SCC follows

from substituting the value function (A.3) into (A.2).

This proposition is also valid in the BAU state. Policy makers ignore the negative externalities from

emitting CO2, so behave as if ΛnpT,Xq “ 0 and λcpTq “ 0. This implies in particular VT “ 0, D “ 0, and

τ“ 0.

Corollary A.2 (Tobin’s Q’s). Under the conditions of Proposition A.1, the Tobin’s Q’s of the green and

brown asset, respectively, are given by

q1 “
p1´γqV ´VSS

δp1´γqV 1´1{θc´1{ψ
, q2 “

p1´γqV `VSp1´ Sq

δp1´γqV 1´1{θc´1{ψ
.

Proof. This follows immediately from (A.8) and (A.9).

Now, we consider the case where a temperature cap is implemented in some state X, i.e., carbon emis-

sions are only allowed as long as Tt ď Tcap. If the carbon budget has been maxed out, i.e. if temperature

exceeds Tcap, society is not allowed anymore to release CO2 into the atmosphere.

Corollary A.3 (Optimal Controls in the CAP state). Suppose that in state X, carbon emissions are

prohibited if temperature exceeds its limit Tcap.

(i) If temperature is below the cap, T ď Tcap, the indirect utility function and the optimal controls are

as stated in Proposition A.1.

(ii) If temperature exceeds Tcap, the separation (A.3) still holds, but the release of CO2 into the atmo-

sphere is no longer allowed, i.e. fn “ 0. Then, the optimal energy composites are

en “ gnκ
1
ρn
1,n “

$

’

&

’

%

”

bgpSq

Anηnκ
ηn{ρn
1,n ΛnpTq

ı
1

ηn´1
κ

1
ρn
1,n, if ρn ą 0

0, if ρn ď 0.
(A.15)
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Optimal consumption is

c “
ÿ

n“1,2

´

Sn

”

Aneηn
n ΛnpTq´ in ´ bgpSqgn ´

ςn

Sn
b̃dpS,X,Dq

ı¯

. (A.16)

The optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.17)

and optimal investment and optimal carbon removal solve the nonlinear system

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV ´VSS
‰

r1´ϕ1 i1s, (A.18)

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2 i2s, (A.19)

δp1´γqV 1´1{θc´1{ψ “ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
. (A.20)

The optimal SCC is as stated in Proposition A.1 and the Tobin’s Q’s are as stated in Corollary A.2.

Proof. Along the lines of the proof of Proposition A.1.

Although the decomposition of the indirect utility function and the optimal controls in (i) are unaffected

when the temperature cap kicks in, the values are different. This is because V has a different shape in

states with and without temperature cap. In the latter scenario, the value function is much steeper as

temperature approaches Tcap.

A.5 Numerical Solution Approach

Basic Idea We face a problem with an infinite time horizon. To solve this problem we first compute

the steady state Ṽ pT,S,Xq on a grid pT,S,Xq assuming there is no exogenous time trend. Thus, we first

have to solve a similar PDE as in (A.12) but without the time derivative. The resulting steady state

Ṽ pT,S,Xq is then used as a terminal condition V ptmax,T,S,Xq “ Ṽ pT,S,Xq for the value function in the

year 2400 corresponding to tmax “ 380. Starting with this terminal condition, we proceed backwards

through the time grid to analyze the transition towards the steady state.

Definition of the Grid We use a grid-based solution approach to solve the non-linear PDE. We dis-

cretize the pt,T,Sq-space using an equally-spaced lattice. Its grid points are defined by

␣

ptn,Ti,S jq | n “ 0, ¨ ¨ ¨ , Nt, i “ 0, ¨ ¨ ¨ , NT , j “ 0, ¨ ¨ ¨ , NS
(

,
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where tn “ n∆t, Ti “ i∆T , and S j “ j∆S for some fixed grid size parameters ∆t, ∆T , and ∆S that denote

the distances between two grid points. The numerical results are based on a choice of NT “ 50, NS “ 200

and one time step per year. Our results hardly change if we use a finer grid or more time steps per year.

In the sequel, Vn,i, j,k denotes the approximated value function at the grid point ptn,Ti,S j,X “ kq and

πn,i, j,k refers to the corresponding set of optimal controls. We apply an implicit finite-difference scheme.

Finite Differences Approach We now describe the numerical solution approach in more detail. We

adapt the numerical solution approach used by Munk and Sørensen (2010). The numerical procedure

works as follows. At any point in time, we make a conjecture for the optimal strategy π˚
n,i, j,k. A good

guess is the value at the previous grid point since the abatement strategy varies only slightly over a

small time interval, i.e. we set πn´1,i, j,k “π˚
n,i, j,k. Substituting this guess into the HJB equation yields

a semi-linear PDE:

0 “ Vt `δθV 1´1{θc1´1{ψ`
ÿ

x‰X
λxpS,T,X, xqV pt,T,S, xq` M1V ` M2VT ` M3VTT ` M4VS ` M5VSS

with state-dependent coefficients Mi “ Mipt,T,S,Xq as stated in Appendix A.4. Due to the implicit

approach, we approximate the time derivative by forward finite differences. In the approximation, we

use the so-called up-wind scheme that stabilizes the finite differences approach. Therefore, the relevant

finite differences at the grid point pn, i, j,kq are given by

D`

T Vn,i, j,k “
Vn,i`1, j,k ´Vn,i, j,k

∆T
, D´

T Vn,i, j,k “
Vn,i, j,k ´Vn,i´1, j,k

∆T
,

D`

S Vn,i, j,k “
Vn,i, j`1,k ´Vn,i, j,k

∆S
, D´

S Vn,i, j,k “
Vn,i, j,k ´Vn,i, j´1,k

∆S
,

D2
TTVn,i, j,k “

Vn,i`1, j,k ´2Vn,i, j,k `Vn,i´1, j,k

∆2
T

,

D2
SSVn,i, j,k “

Vn,i, j`1,k ´2Vn,i, j,k `Vn,i, j´1,k

∆2
S

,

D`
t Vn,i, j,k “

Vn`1,i, j,k ´Vn,i, j,k

∆t
.

Substituting these expressions into the PDE above yields the following semi-linear equation for the grid

point ptn,Ti,S j,kq:

Vn`1,i, j,k
1
∆t

“ Vn,i, j,k

”

´ M1 `
1
∆t

`abs
´M2

∆T

¯

`abs
´M4

∆S

¯

`2
M3

∆2
T

`2
M5

∆2
S

ı

`Vn,i´1, j,k

”M´
2

∆T
´

M3

∆2
T

ı

`Vn,i`1, j,k

”

´
M`

2

∆T
´

M3

∆2
T

ı
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`Vn,i, j´1,k

”M´
4

∆S
´

M5

∆2
S

ı

`Vn,i, j`1,k

”

´
M`

4

∆S
´

M5

∆2
S

ı

`δθV 1´1{θ

n,i, j,k c1´1{ψ

n,i, j,k `
ÿ

k̂‰k

λpS,T,k, k̂qVn,i, j,k̂.

Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This results

in a non-linear system of pNS ` 1qpNT ` 1q equations for every state k of the Markov chain X that can

be solved for the vector

Vn,k “ pVn,1,1,k, ¨ ¨ ¨ ,Vn,1,NS ,k,Vn,2,1,k, ¨ ¨ ¨ ,Vn,2,NS ,k, ¨ ¨ ¨ ,Vn,NT ,1,k, ¨ ¨ ¨ ,Vn,NT ,NS ,kq.

Using this solution we update our conjecture for the optimal controls at the current point in the time

dimension. We apply the first-order conditions as stated in Proposition A.1 and determine the opti-

mal strategies and the optimal SCC with the above-mentioned finite-difference approximations of the

corresponding partial derivatives. After we have solved the model, we simulate all state and decision

variables in a Monte-Carlo simulation. We simulate 200,000 paths and calculate quantiles, means, and

other moments for all relevant variables.

B Asset Pricing

B.1 Dynamics of the Stochastic Discount Factor

Duffie and Epstein (1992a) show that the dynamics of the pricing kernel H are given by

dH
H´

“
d fcpC, Jq

fcpC, Jq
` fJpC, Jqdt.

The relevant partial derivatives of the aggregator are

fcpC, Jq “ δV 1´1{θK´γc´1{ψ, fJpC, Jq “ δpθ´1qc1´1{ψV ´1{θ ´δθ.

To calculate the dynamics of the SDF, we first compute

dK´γ

K´γ
´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt ´γσJ
k dW `

ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi.

Secondly, we determine the dynamics of V 1´1{θ. According to Ito’s lemma, V “ V pt,S,T,Xq satisfies

dV
V´

“µvdt `σJ
v dW ´

ÿ

x‰X
jx
vdNx

A-9



where Nx is a point process that indicates a jump to state x, i.e.,

Nx
τx

“

$

&

%

Nx
τx´ `1 : Xτx “ x, Xτx´ ‰ x

Nx
τx´ : else

with

µv “
1

V´

´

Vt `VSSp1´ Sqµs `VTϑνp f1p1´ Sq` f2Sq´VTϑD (B.1)

`
1
2

VSSS2p1´ Sq2}σs}2 `
1
2

VTTσ
2
T

¯

,

σv “
1

V´

´

VSSp1´ Sqp´σ1 `σ2ρ12q, VSSp1´ Sqσ2

b

1´ρ2
12, VTσT

¯J

, (B.2)

jx
v “ 1´

V pt,T,S, xq

V pt,T,S,Xq
. (B.3)

Another application of Ito’s lemma yields

dV 1´1{θ

V 1´1{θ
´

“

”

θ´1
θ

µv ´
θ´1
2θ2 }σv}2

ı

dt `
θ´1
θ

σJ
v dW `

ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx.

Therefore, by Ito’s product rule,

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt `
θ´1
θ

´

µv ´γxσk,σsy
VS

V
Sp1´ Sq

¯

dt

´
θ´1
2θ2 }σs}2 V 2

S

V 2 S2p1´ Sq2dt `

´

θ´1
θ

σv ´γσk

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi (B.4)

`
ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx.

Notice that according to the simplified HJB equation (A.12),

µv ´γxσk,σsy
VS

V
Sp1´ Sq “ pγ´1q

`

µk ´
1
2
γ}σk}2˘`δθ´δθV ´1{θc1´1{ψ

´
ÿ

i“c,e

λiErp1´ℓiq
1´γ´1s`

ÿ

x‰X
λx jx

v,

where we use the short-hand notation λx “λxpS,X, xq. Substituting this term into (B.4) yields

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt ´
θ´1
2θ2 }σs}2 V 2

S

V 2 S2p1´ Sq2dt

`

´

θ´1
θ

σv ´γσk

¯J

dW
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`
θ´1
θ

´

pγ´1q
`

µk ´
1
2
γ}σk}2˘`δθ´δθV ´1{θc1´1{ψ

¯

dt `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi

`
ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx ´
θ´1
θ

´

ÿ

i“c,e

λiErp1´ℓiq
1´γ´1s´

ÿ

x‰X
λx jx

v

¯

dt.

Furthermore, the consumption-capital ratio c “ C{K has the following dynamics

dc
c´

“µcdt `σJ
c dW ´

ÿ

x‰X
jx
cdNx

for auxiliary functions µcpt,T,S,Xq and σcpt,T,S,Xq, which can be determined numerically, and

jx
c “ 1´

cpt,T,S, xq

cpt,T,S,Xq
. (B.5)

In turn,

dc´1{ψ

c´1{ψ
´

“ ´
1
ψ

pµcdt `σJ
c dWq`

1`ψ

ψ2 }σc}2dt `
ÿ

x‰X

`

p1´ jx
cq´1{ψ´1

˘

dNx

Consequently, the pricing kernel dynamics are given by

dH´

H´

“ ´r f
t dt `

´

´γσk `
θ´1
θ

σv ´
1
ψ
σc

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi ´λiErp1´ℓiq
´γ´1sdt

`
ÿ

x‰X

”

`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

dNx ´λx
`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

dt
ı

, (B.6)

where the risk-free rate is given by

r f
t “ δ`

1
ψ
µk ´

1
2
γ

´

1`
1
ψ

¯

}σk}2 ´

´1`ψ

ψ2 }σc}2 ´
θ´1
2θ2 }σv}2 ´

1
ψ
σJ

c

´

θ´1
θ

σv ´γσk

¯¯

´
ÿ

i“c,e

λiE
”

p1´ℓiq
´γ´1`

ψ´1 ´γ

1´γ

`

1´p1´ℓiq
1´γ

˘

ı

(B.7)

´
ÿ

x‰X

”

λx
`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

`
θ´1
θ

λx jx
v

ı

.

An application of Itô’s lemma gives the drift and volatility vector of optimal consumption as

µCpt,T,Sq “µkpSq`µcpt,T,Sq`σcpt,T,SqJσkpSq, (B.8)

σCpt,T,Sq “σkpSq`σcpt,T,Sq. (B.9)

Substituting (B.8) and (B.9) into the pricing kernel dynamics and some algebra completes the proof.
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B.2 Dividend Dynamics

The amount of consumption goods produced by asset n are

Cn “ Yn ´ In ´ b f Fn ´ bgGn ´ bdpS,X,D,Kq “ χnKn

with χn “
“

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq ´ in ´ bgpSqgn ´ b f pSq fn ´ b̃dpS,X,Dq

‰

. An application of

Ito’s lemma shows that χn evolves according to

dχn

χn´

“µχndt `σJ
χn

dW ´
ÿ

x‰X
jx
χn

dNx

for auxiliary functions µχn , σχn , jx
χn

that can be determined numerically along the lines of (B.1) – (B.3).

Notice that χn is unaffected when the economy is hit by an economic Barro-type disaster shock Nd.

Empirically, dividends are more volatile than consumption (e.g. Bansal and Yaron 2004) and dividends

fall more than consumption when a disaster hits the economy (e.g. Longstaff and Piazzesi 2004). Fol-

lowing Wachter (2013), among others, we thus model dividends as levered consumption, i.e. Dn “ Cφ
n

for φě 1.40 An application of Ito’s product rule yields the dividend dynamics

dDn

Dn´

“µDndt `σJ
Dn

dW `
ÿ

i“c,e

j i
Dn

dN i `
ÿ

x‰X
jx
Dn

dNx

with

µDn “φpµKn `µχn `σJ
χn
σKnq`

1
2
φpφ´1q}σKn `σχn}2,

σDn “φpσKn `σχnq,

j i
Dn

“ p1´ℓiq
φ´1,

jx
Dn

“ p1´ jx
χn

qφ´1.

In a next step, we determine the dynamics of discounted dividends, D̂n “ HDn. Another application of

Itô’s product rule implies

dD̂n

D̂n´

“µD̂n
dt `σJ

D̂n
dW `

ÿ

i“c,e

j i
D̂n

dNi `
ÿ

x‰X
jx
D̂n

dNx

40A popular alternative to this approach is modelling the consumption-dividend ratio as a stationary but persistent process,
as in Longstaff and Piazzesi (2004), among others. In order to focus on the novel implications of climate transition risk on
asset prices, we keep the setting simple although following this approach would also be feasible in our setting.
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with

µD̂n
“µH `µDn `σJ

HσDn ,

σD̂n
“σH `σDn ,

j i
D̂n

“ p1´ℓiq
φ´γ´1,

jx
D̂n

“ p1´ jx
χn

qφp1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1.

B.3 Price-dividend Ratios of Dividend Claims

Let Πn “
Pn
Dn

denote the price-dividend ration of asset n, and πn “ log
` Pn

Dn

˘

the log price-dividend ratio.

Due to the representation of the dividends, the dynamics of Kn, and the pricing equation, the price is

linear in Kn and thus the price-dividend ratio is independent of Kn. Therefore, it is not driven by the

disaster risk process Nd, and the dynamics of the log price-dividend ratio can be written as

dπn

πn´

“µπndt `σJ
πn

dW ´
ÿ

x‰X
jx
πn

dNx,

where the drift and the volatility vector are given by

µπn “
1
πn

“

πn,t `πn,SSp1´ SqµS `πn,TµT `
1
2
πn,TT}σT}2 `

1
2
πn,SSS2p1´ Sq2}σS}2‰,

σπn “
1
πn

“

πn,TσT `πn,SSp1´ SqσS
‰

,

jx
πn

“ 1´
πnpt,T,S, xq

πnpt,T,S,Xq
.

In particular, the price-dividend ratio Πn “ eπn satisfies the following dynamics

dΠn

Πn´

“
`

πnµπn `
1
2
π2

n}σπn}2˘dt `πnσ
J
πn

dW ´
ÿ

x‰X
jx
Πn

dNx,

where

jx
Πn

“ 1´
Πnpt,T,S, xq

Πnpt,T,S,Xq
.

We rewrite the discounted asset price HPn as P̂npD̂n,πnq “ D̂neπn . An application of Itô’s lemma implies

dP̂n

P̂n´

“
`

µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

˘

dt `pπnσπn `σD̂n
qJdW
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`
ÿ

i“c,e

`

p1´ℓiq
φ´γ´1

˘

dNi `
ÿ

x‰X

`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

dNx.

An application of the Feynman-Kač Theorem yields

L P̂n `e´πn P̂n “ 0, (B.10)

where L P̂n denotes the infinitesimal generator. The no-arbitrage condition implies

L P̂n

P̂n´

“µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

(B.11)

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Substituting (B.11) into (B.10) yields

0 “µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

`e´πn

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Consequently, we obtain the following partial differential equation for the log price-dividend ratio πn:

0 “ e´πn `µD̂n
`πn,t `πn,SSp1´ SqµS `πn,TµT `

1
2

pπn,TT `π2
n,Tq}σT}2

`
1
2

pπn,SS `π2
n,SqS2p1´ Sq2}σS}2 `

`

πn,TσT `πn,SSp1´ SqσS
˘J
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Notice that this PDE is nonlinear since it involves squared partial derivatives of πn. To simplify the

numerical solution approach, we transform this PDE into a linear, parabolic PDE that can be solved

using finite differences. We substitute Πn “ eπn and end up with

0 “ 1`
ÿ

x‰X
λxΠnpt,T,S, xqp1` jx

D̂n
q`Πn

´

µD̂n
`

ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

´
ÿ

x‰X
λx

¯

`Πn,t `Πn,SSp1´ SqµS `Πn,TµT `
1
2
Πn,TT}σT}2 `

1
2
Πn,SSS2p1´ Sq2}σS}2 (B.12)

`pΠn,TσT `Πn,SSp1´ SqσSqJσD̂n
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B.4 Risk Premiums

The dynamics of the asset price Pn “ eπnDn follow by Itô’s lemma. We obtain the following asset price

dynamics

dPn

Pn´

“µ
p
ndt `pσπn `σDnqJdW `

ÿ

i“c,e

`

p1´ℓiq
φ´1

˘

dNi ´λipTqE
“

p1´ℓiq
φ´1

‰

dt

`
ÿ

x‰X

”

`

p1´ jx
Πn

qp1´ jx
χn

qφ´1
˘

dNx ´λx
`

p1´ jx
Πn

qp1´ jx
χn

qφ´1
˘

ı

,

where the expected stock return and the volatility vector are given by

µ
p
n “µπn `µDn `σJ

Dn
σπn `

1
2

}σπn}2 `
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´1

‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

.

Now, the risk premium of asset n can be computed as the sum of its expected stock return, µP
n , and its

dividend yield, yd
n “ e´πn , minus the risk-free interest rate, r f , i.e.

rp
n “µ

p
n ` yd

n ´ r f .

To derive a semi-closed form solution of the equity premium and the carbon premium, we multiply risk

exposures with the appropriate market prices of risk and obtain

rp
n “

`

Πn,TσT `Πn,SSp1´ SqσS `φσn `φσχn

˘J
´

γσk ´
θ´1
θ

σv `
1
ψ
σc

¯

`
ÿ

i“c,e

λipTqE
“`

1´p1´ℓiq
˘´γ`

p1´ℓiq
φ´1

˘‰

(B.13)

`
ÿ

x‰X
λx
`

1´p1´ jx
vq1´1{θp1´ jx

cq´1{ψ
˘`

p1´ jx
Πn

qp1` jx
χn

q´1
˘

.

The decomposition (B.13) of the equity premium generalizes formulas similar to this as in van den

Bremer et al. (2023) and Karydas and Xepapadeas (2022) to transition risk. It is known from the

disaster risk literature that the disaster risk component in the second line typically makes the largest

contribution to the equity premium while the diffusion component in the first line has only a small

effect.

The novel component is the transition risk term in the third line. The first factor
`

1´p1´ jx
vq1´1{θp1´

jx
cq´1{ψ

˘

reflects the effect of a transition shock on the stochastic discount factor and is similar to the

corresponding term in the risk-free rate. The second factor
`

p1´ jx
Πn

qp1` jx
χn

q´1
˘

reflects the impact of

transition shock on the share price of sector n. If this price impact is positive, the last term contributes

positively to the risk premium. Moreover, if the price impact of a certain type of shock is more pro-
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nounced for the brown sector, then a carbon premium emerges. However, the carbon premium can also

emerge from diffusive components as can be seen from the first line: In the CAP state, a temperature

shock with volatility σT can have very distinct effects on the green and the brown sector if tempera-

tures are close to two degrees, and thus the difference between Π2,T and Π1,T can drive to the carbon

premium.

C Details on the Calibration

Here we provide further calibration details for all relevant parts of the core and extended models. We

also present alternative calibrations used for sensitivity analyses and robustness checks.

C.1 Calibration of the Core Model

Our calibration is matched to the global economy41 and is market-based. For the political Markov chain,

we assume a constant probability of 4% that there is a switch from BAU to active climate policy, and a

zero probability that there is a switch back to no carbon pricing again.

Macroeconomic Uncertainty We set annual volatility of capital diffusion risk to σ1 “ σ2 “ 2%

matching the observed volatility of consumption or output (e.g., Wachter 2013). We assume a zero

instantaneous correlation between the two capital stocks, ρ12 “ 0 (cf. Cochrane et al., 2007). The

total correlation between capital stocks is much higher than indicated by the value of ρ12 due to joint

macroeconomic disaster shocks and common state variables that affect both sectors (cf. Hambel et al.,

2024).

The recovery rate of macroeconomic disasters, Z “ 1 ´ℓ, has a power distribution over p0,1q with pa-

rameter α ą 0 and density functions ζpZq “ αZα´1, Z P p0,1q (Pindyck and Wang, 2013). The nth

moment of the recovery rate is ErZns “ α
α`n . To calibrate the macroeconomic disaster-size distribution,

we follow Wachter (2013) and define a disaster as an event destroying more than ℓ“ 10% of GDP or ag-

gregate consumption. She uses historical consumption data to estimate an annual disaster probability

of 3.55% and an average consumption loss of 25% when a disaster strikes: λ
ş1´ℓ

0 ζpZqdZ “ 0.0355 and

Erℓ|ℓą ℓs “ 0.25. This pins down α“ 5 and λ“ 0.06.

Economic Growth To jointly calibrate the production and preference parameters, we follow Hambel

et al. (2024) and firstly consider a model with only one capital share in the spirit of Pindyck and Wang

41This is true for consumption, GDP, and capital stocks, but for lack of better data and following Pindyck and Wang (2013)
we calibrate the returns on safe and risky assets to U.S. data.
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(2013). Their model also abstracts from climate change, but it is nested in our two-sector model. The

model is well-suited to explain historical asset returns, since dirty capital dominated the world economy

in the past, while the influence of climate change on asset markets was modest. We assume that the

single-capital stock evolves according to

dK “

´

I ´
1
2
ϕ

I2

K
´δkK

¯

dt ` KσdW ´ K´ℓedNe.

Besides, output is produced by capital K and energy E by a Cobb-Douglas production technology, Y “

AK1´ηEη “ I `C ` bE, where b is the price of one unit of the energy composite E. In the optimum, the

model becomes a simple AK-technology with linear production function Y “ A˚K where productivity is

A˚ “ A
´ b
ηA

¯

η

η´1
.

This aggregate model closely follows Pindyck and Wang (2013), but involves an energy input E. We

solve this model for a representative investor with Epstein-Zin-preferences and obtain a set of non-

linear equations that pin down the model parameters.

Fixing the leverage parameter at φ“ 2.6 (Wachter 2013) and the elasticity of intertemporal subsitution

at ψ“ 1.5 (Bansal and Yaron 2004), we calibrate the remaining parameters to match an expected GDP

growth rate of µ“ 2.52% in normal times, i.e. in the absence of a disaster (Wachter 2013), an average

consumption rate of C
Y “ 63% of GDP, a risk-free interest rate of r f “ 0.8%, an equity premium of

rp “ 6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang 2013).

All real quantities (emissions, GDP, capital stocks, etc.) are calibrated to the global economy, but we

follow Pindyck and Wang (2013) and take the safe rate to be the return on U.S. Treasury bills (0.8%)

and the risky rate as the return on U.S. stocks (7.4%). This choice for the safe rate is not too bad as

one can argue that the relevant safe return for the rest of the world is not that far off from the return

on U.S. Treasury bills. And, it is difficult to find a figure for the global risk-free rate. Since U.S. assets

take up more than 70% of the MSCI World Index, it is perhaps not too bad to follow Pindyck and Wang

(2013) and use this figure of 7.4%. The global return on risky assets may be 0.2% lower than the U.S.

return due to the higher return in emerging markets, so the effect on the coefficient of relative risk

aversion and the elasticity of intertemporal substitution will be very small. For the sake of consistency

we therefore stick to the returns on safe and risky assets used in Pindyck and Wang (2013) and other

papers including van den Bremer and van der Ploeg (2021).
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Following the calculations in Pindyck and Wang (2013) but taking leverage into account one obtains a

non-linear system that involves five equations and five unknowns A˚,ϕ,δk,δ,γ. For the risk-free rate

and the risk premium, one obtains

r f “ δ`
µ

ψ
´ 1

2γ
´

1`
1
ψ

¯

σ2 ´λe

´

αe

αe ´γ`1
1{ψ´γ

1´γ
´

αe

αe ´γ

¯

, (C.1)

rp “φγσ2 `λeγ
”

αe

αe ´γ
´

αe

αe ´γ`φ
`

αe

αe `φ
´1

ı

. (C.2)

Given the values of σ,λe, and αe, (C.2) pins down the degree of relative risk aversion γ. Then, (C.1) can

be solved for the time preference rate δ. Then, we determine the productivity by

A˚ “
q
χ

”

δ`

´ 1
ψ

´1
¯´

µ´ 1
2γσ

2 ´
λe

1´γ

αe

αe ´γ`1

¯ı

. (C.3)

In equilibrium, the model generates an investment-capital ratio of i “ A˚p1 ´χ´ηq and Tobin’s Q is

q “ 1
1´ϕi . Hence, the adjustment cost parameter ϕ is given by

ϕ“
1´1{q

i
. (C.4)

Finally, the capital depreciation rate δk is given by

δk “ i ´0.5ϕi2 ´µ. (C.5)

We use the above equations to calibrate the remaining preference parameters, the depreciation rate, the

investment adjustment cost parameters, and the total factor productivities given in Table 1 to match

an expected GDP growth rate of µ “ 2.52% in normal times without disasters (Wachter, 2013), a con-

sumption share of C
Y “ 63% of GDP, a risk-free interest rate of r f “ 0.8%, an equity risk premium of

rp “ 6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang, 2013).

Energy Consumption We set the energy shares in the production functions to ηi “ 0.043 (van den

Bremer and van der Ploeg, 2021).42 We set the initial cost of fossil fuel to b f pS0q = $540/tC (cf. van

den Bremer and van der Ploeg, 2021), but use a significantly higher initial cost of green energy, bgpS0q

= $810/etC, in line with production costs in developed countries. We have learning by doing in the

production of renewables as the unit production cost drops by 20% for every doubling of cumulative

installed volume of renewables based on a voluminous literature on learning curves in accordance with

Swanson’s law (e.g. Lafond et al., 2018), hence the cost of green goods drops as the green transition

42This assumption is in line with Golosov et al. (2014) who use an energy share of 4%.
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progresses.43 This green technical progress is not exogenous and is an alternative to directed technical

change (Acemoglu et al., 2012). We suppose that the cost parameter for green energy gradually declines

over time as the green transition progresses by setting bgpStq “ bgpS0qk0p1 ´ Stq
´k1 with k0 ą 0 and

k1 ą 0. This gives k0 “ 0.5107 and k1 “ 0.3219.

The green sector only uses renewable energy, so κ1,1 “ 1, κ2,1 “ 0, and ρ1 can be chosen arbitrarily.

The brown sector can be fueled by both energy sources. To calibrate the energy composite of the brown

sector and the CES weights, we set the elasticity of intratemporal substitution to ζ2 “ 2 corresponding

to ρ2 “ 0.5 and the CES weights to κ1,2 “ 0.356, κ2,2 “ 0.644 (Golosov et al., 2014). With this calibration

it is possible to fully replace fossil fuel by green energy withing this sector even though moving capital

to the green sector may be more efficient.

Given those parameter choices, we determine the share of brown capital such that the model generates

19.77% of renewable energy in total energy demand in the BAU-scenario in 2020.44 This gives an initial

share of brown capital of S0 “ 0.876. We can thus back out the initial green and brown capital stocks

(74.3 and 1353.9 trillion US $, respectively).

Emission Intensity Since the emission intensity ν follows dν“ ν´

“

gνdt´ dK
K´

‰

, industrial emissions

are given by E ind
t “ p f1tp1 ´ Stq ` f2tStqK0e

şt
0 gνpsqds. In the BAU state, the social planner does not

take account of the negative externalities caused by emissions but reallocates capital from the brown

to the green sector for other reasons such as diversification purposes (e.g. Hambel et al. (2024) and the

references therein). We now solve and simulate the pure BAU scenario over the next 100 years assuming

a reallocation cost parameter of κ“ 2. This parameter choice yields a BAU simulation of temperature,

emissions, and energy that is well in line with the adjusted RCP8.5 scenario. Given the adjusted RCP8.5

emission data E t and the simulated share of brown capital St, we approximate pptq “
E t

Er f1tp1´Stq` f2tSts
by

a cubic polynomial function of time, pptq “ p0 ` p1t ` p2t2 ` p3t3, with p0 “ 2.08 ¨1015, p1 “ 4.22 ¨1013,

p2 “ 1.01 ¨ 1012, p3 “ ´9.76 ¨ 109, and R2 ą 99%. The corresponding growth rate gν is then given by

gνptq “ d
dt ln pptq. Figure C.1 depicts the adjusted RCP8.5 emission data and the model fit. Panel (a)

shows the simulated data pptq (o) determining the emission intensity and its cubic fit. Panel (b) depicts

the median evolution of the BAU emissions ( ) and compares it to the RCP8.5 emission predictions

(o). It also shows the corresponding 5% and 95% quantile of BAU emissions ( ). This calibration

implies that the emission intensity νt tends to decline over time although it is exposed to stochastic

shocks.
43Swanson’s law is the solar industry specific application of Wright’s Law which states there will be a fixed cost reduction for

each doubling of manufacturing volume. More specifically, Swanson’s law states that the price of solar panels drops by 20 per-
cent every time the volume of panels shipped doubles, see https://www.economist.com/news/2012/11/21/sunny-uplands.

44We use world bank data on the share of renewable energy of total final energy consumption, see https://data.
worldbank.org/indicator/EG.FEC.RNEW.ZS.
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Figure C.1: Calibration of Emission Intensity. Panel (a) shows the simulated data pptq (o) determining
the emission intensity and its cubic fit. Panel (b) depicts the median evolution of the BAU emissions ( ) and
compares it to the adjusted RCP8.5 emission data (o). It also shows the 5% and 95% quantiles of BAU emissions
( ).

We thus calibrate the emission intensity such that the pure BAU simulation mimics the modified

RCP8.5 scenario of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(Cambridge University Press, 2014). RCP8.5 is characterized by high emissions leading to a tempera-

ture increase of about 4.3˝C relative to the pre-industrial level by the end of this century.45 We slightly

modify the emission data to take account of the lower emissions in reality compared to the RCP8.5 sce-

nario. While the scenario predicts emissions of 12.44 GtC in 2020, emissions were only 10 GtC. Thus, we

calibrate the emission intensity to adjusted RCP8.5 emission data that is 20% lower than the original

data.

Temperature Dynamics Estimates of the transient climate response to cumulative emissions range

from 0.8 to 2.4˝C/TtC (e.g. Allen et al., 2009; Matthews et al., 2009). We take a TCRE of ϑ“ 1.8˝C/TtC,

which is in line with the temperature evolution in DICE-2016R and other climate-economic models such

as Dietz and Venmans (2019). Moreover, we choose a constant temperature volatility of σT “ 0.033 to

match the temperature range of global mean temperature increase in the RCP scenarios.46

Damage Specification We use a standard, inverse quadratic damage function of the form ΛpTq “

1
1`θT2 . The damage function parameter corresponding to Nordhaus (2017) is θ“ 0.00236. This leads to

very low carbon taxes, and a prominent recent study suggests that damages are much higher leading

to a benchmark SCC of around $185/tCO2, see Rennert et al. (2022).47 Tol (2023) has conducted a meta

45The data is available from the RCP database, see http://tntcat.iiasa.ac.at/RcpDb.
46The temperature range in the year 2100 of the various RCP scenarios varies between 0.8˝C around its mean in RCP2.6 to

1.1˝C in RCP8.5.
47Bilal and Känzig (2024) obtain an even higher benchmark SCC of around $1,000/tCO2. We do not adopt this higher value,

but will in Section 5 allow for temperature-dependent risks of climate disasters which pushes up the SCC considerably.
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analysis and found that the estimates of the SCC have increased considerably. He finds an average SCC

of about $40/tCO2 for a low discount rate corresponding to a market based-calibration although the SCC

can easily reach three-digit numbers for lower discount rates. Since our calibration is market-based, we

calibrate the damage parameter to match the $40/tCO2 in 2020, leading to θ“ 0.0073.48

C.2 Additional Calibration Details for Extended Model

Climate Tipping Risks Given the initial value of the TCRE in the pre-tip state, ϑpX c
0 “ 1q “ 1.8˝C{TtC,

and the range of estimates up to 2.4˝C{TtC for the TRCE, we choose a TCRE of ϑpX c “ 2q “ 2.1˝C{TtC

for the intermediate state and ϑpX c “ 3q “ 2.4˝C{TtC for the post-tip state. From the pre-tip state, the

transition intensity to the intermediate and post-tip state is λcpS,1, jq “ λ̂
1, j
c pT ´ 1q with λ̂

1, j
c “ 0.012

(cf. Cai and Lontzek, 2019).49 This implies an annual initial tipping intensity of 0.324% at T0 “ 1.27˝C

corresponding to an expected duration of 309 years and a tipping intensity of 1.2% at T “ 2˝C corre-

sponding to an expected duration of 83 years. The transition intensity for the post-tip state conditional

on being in the intermediate state is λcpS,2,3q “ λ̂
2,3
c “ 0.02 corresponding to an average duration of 50

years between the intermediate and the final climate tipping state. The climate can also jump directly

from state 1 to state 3, so the total tipping intensity at the initial temperature T0 “ 1.27˝C is 0.648%

(cf. van den Bremer et al., 2023). Finally, we have irreversible climate tipping, so λcpS, i, jq “ 0 for j ă i.

Negative Emission Technology For the calibration of the parameters of the marginal cost function

for the negative emission technology BbdpS,X t“2,D,Kq

BD “ Kra1pSq` a2pSqa3pSqexppa3pSqDqs, we first av-

erage the data from the two scenarios described in Rebonato et al. (2023) and shown in their Figure 5.

We neglect the very small share with low but steep marginal costs for removal that is close to zero. The

averaged data—expressed in GtC—is depicted in Figure C.2 for the year 2050 (Panel a) and 2100 (Panel

b). Then, we calibrate the truncated power functions of the form a jpSq “ b j maxpζ,Sqc j , j P t1,2,3u

jointly to both curves by assuming that the time dependencies are only driven by variations in S. In

this sense, S models technological progress towards a low-carbon economy. We simulate S and K for the

optimal scenario (PIGOU) and calibrate the power functions a1,a2,a3 such that the expected marginal

costs at τ P t31,81u, i.e., in the years 2050 and 2100, respectively, match the marginal cost curves as

closely as possible in a least-squares sense. The parameters obtained are all strictly positive so that in

particular B2bdpS,X t“2,D,Kq

BDBS ą 0, i.e., the greater the proportion of brown capital, the greater the marginal

removal costs. The fit is visualized by the black line ( ). The exponential marginal cost function per-

forms very well with an R2 exceeding 99%.

48This carbon price is computed along the optimal Pigouvian path without policy uncertainty (see Appendix E.3). With
temperature-dependent risks of recurring climate disasters and climate tipping (see section 5), it becomes $113/tCO2.

49Climate tipping is only possible if temperature exceeds 1˝C, which given our initial temperature is the case.
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Figure C.2: Calibration of the Marginal Cost Function for NET. The figure shows the averaged data from
the two scenarios in Rebonato et al. (2023) (o). Panel (a) shows the resulting marginal costs function for the year
2050 and Panel (b) for the year 2100, respectively. We fit an exponential function of the form BbdpS,X t“2,D,Kq

BD “

Kra1pSq ` a2pSqa3pSqexppa3pSqDqs to this data as shown by the black line ( ), where a jpSq “ b j maxpζ,Sqc j

are truncated power functions of the share of brown capital.

More Realistic Model of Policy Tipping Ongoing global warming (exponentially) increases the

likelihood of strengthening climate policy once temperature has crossed 1.5˝C (Barnett, 2024). Al-

though carbon taxes or cap-and-trade systems have never been completely abolished after they had

been implemented, there is a significant hazard of climate change deniers coming (back) to power. To

allow for transitions back to BAU, we model political transition intensities by

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rmaxpT ´1.5,0q´ Ss
˘

, i ă j

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rminp1.5´ T,0q` Ss
˘

, i ą j

with λ̂
i, j
p ą 0 for i ‰ j and µ̂ ą 0. The probability for jumps to a more ambitious climate policy ( j ą i)

thus rises in temperature if T ą 1.5˝C. It also falls in the share of brown capital as a result of lobbies

to slow down the green transition;50 also, as the green sector grows in size, green lobbies increase the

chance of more stringent climate policies. Conversely, the probability for jumps back to a less ambitious

climate policy ( j ă i), falls in temperature if T ą 1.5˝C and rises in the share of brown capital due to

stronger brown and weaker green lobbies.

We choose parameters to roughly match the likelihood and resulting temperature increase of the various

transition scenarios in Moore et al. (2022): about 48% of their simulations are in their modal scenario,

which leads to an average temperature increase of 2.3˝C. About 28% of their simulations lead to ag-

50For instance, more than 2400 lobbyists affiliated with oil and gas industries attended the re-
cent climate summit COP28, e.g. https://www.theguardian.com/environment/2023/dec/05/
record-number-of-fossil-fuel-lobbyists-get-access-to-cop28-climate-talks.
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gressive climate action limiting global warming to up to 1.8˝C. There is less ambitious or less effective

climate action in the remaining scenarios (about 24%) with average temperature increases of around

3˝C, of which less than two percent of the simulations lead to significantly higher temperatures. To

replicate those figures with our model, we use the parameterization in Table 2. We thus find that the

jump intensity from BAU to modest (PIGOU) or ambitious (CAP) climate policies at T0 “ 1.27˝C and

S0 “ 0.876 is 6.22% and 2.59%, respectively, which correspond to an expected duration of 16.08 or 38.56

years. The average time until the government takes climate action is half the harmonic mean of those

average durations: 11.35 years. Compared to technological or climate tips, these are quick transitions.

If BAU continues and temperature rises to say 2˝C, expected durations shorten to 11.05 and 26.52 years,

respectively. This cuts the average time until the government takes climate action to 7.80 years. Hence,

we assume that ongoing global warming and a smaller share of brown capital make it more likely that

policy makers start taking the climate serious.

D Additional Simulation Results for the Core Model

This section provides further details including the policy functions for the simulations of our core model.

D.1 Scenarios without Transition Risks.

Macroeconomic outcomes and temperature for the BAU and CAP policy simulations are presented in

Figure D.3. As can be seen from Figure D.4, the risk-free rate and the risk premiums are hardly affected

in this BAU scenario. This is in line with van den Bremer and van der Ploeg (2021), Hambel et al. (2024),

who demonstrate that TFP damages alone are not sufficient to generate a temperature risk premium

in the spirit of Bansal et al. (2017), Donadelli et al. (2017), Hong et al. (2019), and Gregory (2024). We

therefore extend the model with climate-related disaster and climate tipping risks in section 5.

D.2 Policy Functions for the Core Model

Here we discuss the influence of the state variables and the policy states on the optimal decisions

and asset returns, captured by the so-called policy functions. From this, we derive intuition for the

influence of the share of brown capital and temperature on the optimal controls. In particular, we

discuss how climate change affects the interest rate and asset returns. All the results are for the

benchmark calibration of our core model for the year 2025. The policy functions are depicted in two

figures and depend on the state variables, i.e. S, T and X p. They are qualitatively similar for other

years. Figure D.5 depicts policy functions for the BAU policy state, and Figure D.7 for the CAP policy
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Figure D.3: BAU Scenario (left panels) and CAP scenario (right panels) without Transition Risks.
Mean values are depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted lines
( ) in Panels a1) and a2) depict the mean path of the share of fossil fuel in the global energy mix.

state. The dark lines ( ) depict S = 0.75, the gray lines ( ) refer to S = 0.5, and the light lines ( )

to S = 0.25. The horizontal axis depicts the temperature in the range from 0˝C to 4˝C.
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Figure D.4: Business-as-usual Scenario without Transition Risks: Asset Pricing. Average values are
depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in panel a)
depicts the mean path of the share of fossil fuel in the global energy mix.

BAU Policy State Panel a) of Figure D.5 shows that in the BAU policy state the carbon tax is zero

(panel c)). Optimal consumption hardly depends on the share of brown capital although it is high if the

share of green capital is high. Panel b) depicts optimal capital reallocation from the brown sector to the

green sector. As policy makers ignore the negative externality from carbon dioxide but has a motive

for diversification, they reallocate capital from the brown to the green sector only if the capital share

is above 50% (Hambel et al., 2024). The relocation does not depend on temperature in the BAU state.

Panels d), e), and f) depict energy use relative to the respective capital stock, which does not vary with

temperature, but brown energy is high and green energy use is low if the share of brown capital is high.

Since capital markets price in climate transition risks and anticipate both climate damages and poten-

tial climate policy that may eventually be implemented, the asset pricing moments depicted in panels

g), h), and i) depend on temperature. Panel g) shows that the risk-free rate decreases in the share of

brown capital and is heavily curbed for temperatures above the two degrees cap. If a policy shock from

the BAU to the CAP policy state would hit the economy when temperatures are above the 2˝C cap, the

brown capital stock may not be operated anymore. This policy transition risk is priced in (see equation

(3.2) and the discussion in the main text). Similar effects lead to a slight increase of the risk premiums

of both risky assets around the critical temperature of two degrees, leading to a transition risk premium
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Figure D.5: Policy Functions for the BAU Policy State. The graphs depict policy rules as functions of the
two state variables S and T and of the policy state. On the horizontal axis is temperature in the range 0˝C to
4˝C. The lines represent various levels of the brown capital share: dark lines ( ) depict S “ 0.75 the gray lines
( ) refers to S “ 0.5, and the light lines ( ) to S “ 0.25.

in the spirit of Engle et al. (2020). These transition risks are more pronounced if the share of brown

capital in the total capital stock is large.

CAP Policy State Turning to the CAP policy state, Panel a) of Figure D.7, shows that the consumption-

to-output ratio significantly increases when temperatures exceed 2˝C. Because from then on fossil fuel

must not be used anymore (panel d)), output and economic growth drop. This effect is more pronounced

if the share of brown capital is large and society relies more on fossil fuel. The economy satisfies its

desire for consumption smoothing by increasing the consumption-to-output ratio and the demand for

renewable energy in the brown sector that can partially substitute fossil fuel (panel e)). Panel b) il-
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Figure D.6: Policy Functions for the CAP Policy State. The graphs depict policy rules as functions of the
two state variables S and T. On the horizontal axis is temperature in the range 0˝C to 4˝C. The lines represent
various levels of the brown capital share: dark lines ( ) depict S “ 0.75, the gray lines ( ) refers to S “ 0.5,
and the light lines ( ) to S “ 0.25.

lustrates that capital reallocation takes place at a much faster rate than in the BAU state. Due to

prevailing climate risks and policy, society keeps on reallocating even if the share of brown capital is

already quite low. Panel c) illustrates that the carbon tax increases dramatically if temperatures are

close to but still below two degrees in order to prevent them from crossing the cap. Once temperatures

exceed the 2˝ cap, it becomes more and more unlikely that they will fall below 2˝ again. Thus for high

temperatures, the carbon tax is merely a shadow price as carbon dioxide must not be emitted anymore.

Panel g) depicts the equilibrium risk-free rate. As in the BAU policy state, it drops drastically if temper-

atures are below two degrees. This is, however, not due to the jump component in equation (3.2), which

is zero in the CAP policy state. This drop is mainly driven by the consumption smoothing component
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Figure D.7: Effect of Climate Policy on Financial Markets. The graphs depict the effect of a transition from
the BAU state to the CAP policy state as functions of the two state variables S and T. On the horizontal axis is
temperature in the range 0˝C to 4˝C. The lines represent various levels of the brown capital share: dark lines
( ) depict S “ 0.75, the gray lines ( ) refers to S “ 0.5, and the light lines ( ) to S “ 0.25.

1
ψ
µC. As fossil fuels must not be used anymore, the expected consumption growth rate is much lower

than in the BAU state. Consequently, the risk-free rate experiences a negative shock, which is stronger

if the economy relies a lot on brown capital. Finally, panels h) and i) depict the risk premiums of the

two risky assets. Again, both assets price in the aforementioned transition risk, which corresponds to

the first line of (B.13). Now the brown asset is much stronger affected than the green asset, leading to

a positive carbon premium (see the second line of (3.4) and the discussion in the main text).

Effect of Climate Policy on Financial Markets We now examine the impact of a policy transition

from the BAU to the CAP policy state. It turns out that such a policy transition has significant implica-

tions for financial markets. As can be seen from panels a) and b), the price of the green asset goes up

drastically while the price of the brown asset is negatively affected. While the impact of such a policy

shock is rather moderate for low temperatures, it increases drastically if temperatures are close to or

above two degrees. The stark negative price effect on the brown asset is particularly pronounced if the

temperature cap has been crossed and fossil fuel must not be used for production anymore. We also

see that the positive price impact on the green asset is stronger if there is still much brown capital in
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Figure D.8: Carbon Taxes. The figure shows histograms for the implemented carbon tax, i.e., conditional on
being in the CAP policy state, for the years a) 2025, b) 2050, b) 2075, and d) 2100.

the economy. Then, the demand for green assets to compensate the loss in the brown sector is partic-

ularly strong. These findings are also reflected in panels e) and f), which illustrate the effect on the

price-dividend ratios of both risky assets.

Panel c) now illustrates the effect of a policy transition shock on the risk-free rate, which is always

negative. If temperatures are below the 2˝ cap, the risk of phasing out fossil fuel is now more pronounced

and so the demand for precautionary savings increase. If temperatures are already above two degrees,

production becomes more expensive as fossil fuel must not be used anymore. Consequently, consumption

growth is slowed down and the term 1
ψ
µC in equation (3.2) becomes smaller after the policy transition.

D.3 Additional Material for the Core Simulations

Optimal Carbon Taxes Table D.1 reports the unconditional moments of the implemented carbon tax

for the years 2025, 2050, 2075, and 2100. Since the carbon tax is implemented in only about 25% of

the paths in 2025, its unconditional distribution is clearly right-skewed. Its skewness tends to decline

over time as carbon taxes are implemented in more and more paths. Figure D.8 shows histograms for

implemented carbon taxes for the years 2025, 2050, 2075, and 2100. Those histograms are generated

with 20,000 paths conditional on being in the CAP policy state.
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(a) Unconditional moments

Erτs Medpτq σpτq q5%pτq q95%pτq Skewpτq

2025 42 0 97 0 275 2.01
2050 372 345 366 0 1072 1.06
2075 465 457 300 0 957 0.74
2100 696 651 395 0 1402 0.65

(b) Conditional moments

Erτs Medpτq σpτq q5%pτq q95%pτq Skewpτq

2025 254 250 53 175 347 0.70
2050 562 481 309 215 1197 1.48
2075 538 501 254 210 989 1.48
2100 738 677 367 247 1416 0.93

Table D.1: Optimal Carbon Tax. The table reports summary statistics of (a) the unconditional optimal carbon
tax and (b) the optimal carbon tax conditional on being implemented for the years 2025, 2050, 2075, and 2100.
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Figure D.9: An Illustrative Sample Path (Asset Prices). Average values are depicted by solid lines ( ) and
5% and 95% quantiles by dashed lines ( ). To simplify the comparison between the brown and green assets,
we have normalized share prices in 2020 in panels (a) and (b) and dividends in 2020 in (c) and (d) to one in each
case. The thin black lines ( ) shows one illustrative sample path, where society switches from the BAU policy
state to the CAP policy state in the year 2045.

An Illustrative Sample Path for Asset Prices Figure D.9 complements Figure 2 from the main

text. In particular, it illustrates the simulated normalized dividends and share prices for both risky

assets. Panels a) and b) illustrate the price impact of a climate policy shock from the BAU state to the
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Scenario Average Carbon tax [$/tCO2] Carbon premium [%]

λx 2025 2050 2075 2100 2025 2050 2075 2100

BAU – 0 0 0 0 0.0 0.0 0.0 0.0
PIGOU – 45 77 127 199 –0.1 0 0.2 0.6
CAP – 66 117 132 190 –0.5 0.3 2.0 1.8

BAU Ñ CAP 4% 11 (73) 99 (153) 122 (143) 190 (202) –0.2 0.3 1.6 1.1
BAU Ñ CAP 20% 45 (72) 129 (129) 134 (134) 195 (195) –0.5 0.5 2.2 2.0

BAU Ñ PIGOU 4% 8 (46) 54 (81) 119 (137) 207 (219) 0.0 0.0 0.1 0.4

Table E.2: SCC and the Carbon Premium in Alternative Scenarios. The table reports average carbon
taxes and average carbon premiums or the years 2025, 2050, 2075, and 2100. The numbers in brackets refer to
the average optimal carbon tax conditional on being implemented.

CAP state in the year 2045. This event is accompanied by a rise in the price of the green asset and a

sharp fall in the price of the brown asset. The effect on prices is stronger than on dividends, whereby

the price-dividend ratio of the green asset increases strongly and that of the brown asset decreases.

The sharp rise in the price-dividend ratio of the green asset causes a decline in the dividend yield.

However, the onset of climate policy will increase demand for the green asset in the long term, causing

the expected growth rate to rise sharply. This overcompensates for the decline in the dividend yield and

leads to an increase in the green premium. Conversely, the increase in the brown risk premium can be

explained by the now significantly increased risk of fossil fuels phasing out.

E Sensitivity of Core Results

E.1 Higher Transition Risk

We first examine the extent to which the carbon premium and the carbon tax depend on transition

probabilities (see rows 4 and 5 of Table E.2). With an annual transition probability of 20% (rather

than 4%) for switching to the CAP policy state, the unconditional average carbon tax is higher because

more paths will implement climate policy. It is significantly higher in the short than in the long run,

since over time more and more paths will have switched to the CAP policy state and the difference in

carbon taxes diminishes. The unconditional average carbon tax is smaller than in the benchmark case

as climate action has started earlier and policy makers do not have to catch up on so much that was

missed in the BAU policy state. The carbon premiums are higher too in later years.
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E.2 Tighter Temperature Cap

The second sensitivity exercise is to examine a temperature cap of 1.5˝C instead of 2˝C (see Appendix

E.4 and Figure E.10). Carbon pricing is then in the next two decades more ambitious to avoid the

potentially devastating effects of overshooting the carbon budget, but in the distant future damages

and the optimal carbon tax have grown so much that temperature caps no longer bite and the difference

in carbon pricing disappears. The carbon premium becomes earlier economically relevant than when

the economy is in the CAP state and temperature is close to 1.5˝C.

E.3 Carbon Pricing without Temperature Cap

The third sensitivity exercise is to examine what happens if we replace the CAP policy state with a more

modest carbon prices called the PIGOU policy state, which internalizes the global warming externalities

but does not enforce the temperature cap (see last row of Table E.2). First, consider modest carbon

pricing without policy transition risk. In line with the equivalent simulation with the CAP state without

transition risk, the carbon premium is initially very small and negative (–0.1%), but remains below

0.75% due to the absence of transition risk. Thus, the magnitude of the carbon premium is small and

economically not significant. It only becomes relevant at the end of this century when sizable carbon

taxes are implemented.

Second, we consider the scenario with transition risk and the BAU and PIGOU policy states. Simula-

tions starts with BAU until there is a policy switch and policy makers start pricing carbon modestly.

Like the BAU and PIGOU scenarios without transition risk, there are no significant carbon premiums.

Compared to the PIGOU scenario without transition risk, policy makers implement slightly higher car-

bon taxes after a transition to the PIGOU policy state to make up for the omitted carbon pricing in the

BAU policy state. For instance, in the year 2050, the average carbon tax in the PIGOU policy state is

$81/tCO2, which is slightly higher than in the pure PIGOU scenario ($77/tCO2).

Hence, the risk of exceeding a temperature cap, not policy transition risk, is at the root of a sizeable

carbon premium. In this sense, the risk of exceeding a temperature cap is a form of transition risk.

E.4 CAP Scenario without Policy Transition Risks

Figure E.12 provides the simulation results when the model starts in the CAP state and excludes policy

transitions to the BAU or PIGOU state (i.e. with the political Markov chain switched off). In contrast to

the PIGOU scenario, the carbon premium can be sizable if temperatures are close to 2˝C. This scenario

leads to an even faster transition to net zero than the PIGOU scenario and policy makers implement

more stringent carbon prices.
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Figure E.10: Core Model with a Tighter Carbon Budget. Average values are depicted by solid lines ( )
and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts the mean path of the
share of fossil fuel in the global energy mix.
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Figure E.11: PIGOU Scenario without Transition Risks (Optimal Carbon Taxes, No Temperature Cap).
Average values are depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted
line ( ) in Panel a) depicts the mean path of the share of fossil fuel in the global energy mix.
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Figure E.12: CAP Scenario without Transition Risks. Average values are depicted by solid lines ( ) and
5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts the mean path of the share
of fossil fuel in the global energy mix.
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