
Part VI

Fixed Income Modeling
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Coupon Bonds

Now, we are turning to interest rate products beyond a simple money
market account.
Bond = tradeable debt issued by borrower represented by a contract
to repay the notional plus interest over the lifetime of the bond.
Modeling bonds is more involved than modeling stocks because

1 they pay regular coupons Ci at predefined payment dates Ti ⇒ clean
vs. dirty prices

2 they have a finite time horizon T with a known redemption value N
3 their volatility dies out as t → T
4 they are exposed to default risk (see Chapter 7) and liquidity risk

Structure of a coupon bond:
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Example: United States of America 1.375% 16/23

The graph depicts the evolution of the clean price.

The true market price is the dirty price = clean price + accrued
interest.

Accrued interests are paid to compensate the seller for the period
during which the bond has been held but for which she will receive no
coupon payment.
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Example: United States of America 1.375% 16/23

Bond Volatility is dying out as t → T .

Clean Price → N as t → T .

Dirty Price → N + C as t → T .
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Bond Yields

The yield-to-maturity y ct (T ) of a coupon bond paying coupons at a
rate c (C = c∆Ti

N) and maturing at T = Tn is implicitly defined by

Pc
t =

n∑
i=1

Ce−y c
t (T )(Ti−t) + N e−y c

t (T )(T−t)

In practice, bonds are often quoted in terms of yields instead of prices.
The concept makes the implicit assumption that one can reinvest the
coupon payments at the same rate of return.
Yields of zero-coupon bonds are also called spot rates, i.e.,
Rt(T ) = y0t (T ).
Solving for the yield-to-maturity typically requires a computer since
closed-form solutions are only available in rare special cases.
There is an approximation for the discretely-compounded
yield-to-maturity which admits a nice interpretation:

ysimple ≈ C

P0
+

1

T − t

N − Pt

Pt
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First-order Approximation
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Evolution of Bond Yields 1y

source:	tradingeconomics.com
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Evolution of Bond Yields 10y

source:	tradingeconomics.com
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Evolution of Bond Yields 50y

source:	tradingeconomics.com
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Zero-Coupon Bonds

A zero-coupon bond is a bond that does not pay any coupons.

A coupon bond is just a portfolio of zero-coupon bonds.

For our modeling purposes, we consider zero-coupon bonds with
notional N = 1 only, and assume that these bonds can be traded for
every time horizon T . These bonds will be called T -bonds.

The time-t price of a T -bond is denoted by Pt(T ). Convention:
P(T ) = P0(T ).

This is the discount factor at time t for safe payments made at time
T . It represents the “time value of money”.

Arbitrage-free (dirty) price of a coupon bond that pays coupons C at
predefined payment dates Ti , i = 1, . . . , n, has a notional N, and
matures at time T = Tn:

Pc
t =

n∑
i=1

C Pt(Ti ) + N Pt(T )
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Bond Price versus Discount Curve
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Problem: Term Structure of Interest Rates

1 The graph below depicts the yield curve T 7→ yt(T ) of German
Bundesanleihen in 2019. Plot the yield curve of German
Bundesanleihen as of 11th of October (data on Canvas).

2 Explain how and why the term structure has been evolving over the
last couple of years and why this might be a problem when we model
the term structure of interest rates.
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Problem: Solution (1)
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Problem: Solution (2)
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Outline for Bond Modeling

We have to deal with five problems:

1 Term Structure of Interest Rates
→ Model how interest rates vary over time.

2 Coupon Payments
→ Model the prices of zero-coupon bonds. A coupon bond is just a
portfolio of zero-bonds.

3 Finite Time Horizon
→ We already know how to price derivatives with a finite time
horizon.

4 Vanishing Volatility
→ This problem will be solved automatically.

5 Credit Risk
→ Add a jump process to the dynamics that models credit default
(see Chapter 7).

In order to understand how these steps can be carried out we need to
establish the relations between interest rates and bond prices.
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Spot Rates vs. Forward Rates

To make discount factors for different maturities more easily accessible,
usually a translation is made to interest rates (or yields to maturity).
There are two fundamental types of interest rates for each bond issuer.

1 Spot rate Rt(T ) holds at time t for an investment over [t,T ].
Convention: R(T ) = R0(T ).

2 Forward rate Ft(T1,T2) holds at time t for an investment over
[T1,T2]. Convention: F (T1,T2) = F0(T1,T2).
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Spot Rates

The spot rate can be backed out from zero bonds from the equation

Pt(T ) = e−Rt(T )(T−t) ⇐⇒ Rt(T ) = − 1

T − t
ln
(
Pt(T )

)
Price of a coupon bond that pays coupons C at predefined payment
dates Ti , i = 1, . . . , n, has a notional N, and matures at time
T = Tn:

Pc
t =

n∑
i=1

Ce−Rt(Ti )(Ti−t) + N e−Rt(T )(T−t)

The curve that is obtained by plotting Pt(T ) against T is called the
discount curve, i.e., T 7→ Pt(T )

The curve that is obtained by plotting Rt(T ) against T is called the
spot curve, i.e., T 7→ Rt(T )

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 153 / 259



Forward Rates and Forward Agreements

A forward agreement is a contract that allows an investor to log in
today an interest rate for an investment over a future time interval.
Forward rate Ft(T1,T2) holds at time t for an investment over
[T1,T2]. Convention: F (T1,T2) = F0(T1,T2).

No arbitrage implies

eRt(T1)(T1−t)︸ ︷︷ ︸
=1/Pt(T1)

eFt(T1,T2)(T2−T1) = eRt(T2)(T2−t)︸ ︷︷ ︸
=1/Pt(T2)

Consequently,

Ft(T1,T2) =
1

T2 − T1
ln
(Pt(T1)

Pt(T2)

)
=

1

T2 − T1

[
Rt(T2)(T2 − t)− Rt(T1)(T1 − t)

]
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Instantaneous Forward Rate

We define the instantaneous forward rate as

Ft(T ) = lim
∆t→0

Ft(T ,T +∆t)

An application of L’Hospitals rule yields

Ft(T ) = − ∂

∂T
lnPt(T ) = −P ′

t(T )

Pt(T )

Since lnPt(T ) = −Rt(T )(T − t), we obtain

Ft(T ) = Rt(T ) + (T − t)
∂

∂T
Rt(T )

The curve that is obtained by plotting Ft(T ) against T is called the
forward curve, i.e., T 7→ Ft(T )
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Important Relations

The discount factors can be expressed in terms of the forward rates

Pt(T ) = e−
∫ T
t Ft(s)ds

In particular, to ensure that discount factors are monotonically
decreasing it is necessary and sufficient that the forward rates are
positive.

We can express the spot rate in terms of the forward rate by

Rt(T ) =
1

T − t

∫ T

t
Ft(s)ds

This shows that the spot rates can be viewed as a cumulative average
of the forward rates.
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Relation to the Money Market Account

By definition

rt = lim
∆t→0

Rt(t +∆t) = − lim
∆t→0

∂

∂T
lnPt(t +∆t) = Ft(t)

A zero-bond with maturity at T can be considered as a “derivative”
with constant payoff 1 at T , i.e.,

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
We thus need appropriate models for the short rate. From these, we
can derive

(Zero)-coupon bond prices
Term structure of interest rates, i.e., the mapping T → Rt(T )
Prices of interest rate derivatives
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LIBOR Rates

London Interbank Offered Rate (LIBOR) is an interest-rate average
calculated from estimates submitted by the leading banks in London.

The real-world LIBOR rates are simple interest rates without
compounding during their lifetime with maturity in 1 day, 1 month, 3
months, 6 months, and 12 months.

In this lecture, we refer to LIBOR as a set of discretely compounded
risk-free rates.

Tenor: ∆Ti
= Ti+1 − Ti

current LIBOR-spot rate for [t,Ti ]: Lt(t,Ti )

current LIBOR-forward rate for [Ti ,Tj ]: Lt(Ti ,Tj)

future LIBOR-spot rate for [Ti ,Tj ]: LTi
(Ti ,Tj), Ti > t
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LIBOR Rates

Under no arbitrage, the LIBOR-forward rates satisfy

1 + Lt(Ti ,Tj)(Tj − Ti ) = eFt(Ti ,Tj )(Tj−Ti ) =
Pt(Ti )

Pt(Tj)

=⇒ Lt(Ti ,Tj) =
1

Tj − Ti

[Pt(Ti )

Pt(Tj)
− 1

]
.

Using ∆Ti
= Ti+1 − Ti , the one-period LIBOR-forward rates satisfy

Lt(Ti ) = Lt(Ti ,Ti+1) =
1

∆Ti

[ Pt(Ti )

Pt(Ti+1)
− 1

]
LIBOR-spot rates:

LTi
(Ti ,Tj) =

1

Tj − Ti

[ 1

PTi
(Tj)

− 1
]

and the corresponding one-period rate

LTi
= LTi

(Ti ,Ti+1) =
1

∆Ti

[ 1

PTi
(Ti+1)

− 1
]

.
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Floating Rate Notes

A Floating Rate Note is a bond with variable coupon payments that
are typically linked to a reference rate.

It is very common in quantitative finance to use LIBOR rates as
reference interest rates.

Variable coupon payments made at times Ti , i = 1, . . . , n with
∆Ti

= Ti+1 − Ti , are spot LIBOR payments LTi−1
= LTi−1

(Ti−1,Ti )
fixed at the previous payment date Ti−1.

Payment structure of a FRN:

t T1 T2 . . . Tn−1 T = Tn

Ct LT0∆T0N LT1∆T1N . . . LTn−2∆Tn−2N (1 + LTn−1∆Tn−1)N
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Price of a Floating Rate Note

Determine the price of the FRN at time Tn−1:

Pfloat
Tn−1

= PTn−1(Tn)N(1 + LTn−1∆Tn−1) =
N(1 + LTn−1∆Tn−1)

1 + LTn−1∆Tn−1

=⇒ Pfloat
Tn−1

= N.

Determine Pfloat
Tn−2

by discounting value components at Tn−1

value of remaining cash flows: N
coupon: LTn−2N

discounting yields

Pfloat
Tn−2

=
N(1 + LTn−2∆Tn−2)

1 + LTn−2∆Tn−2

=⇒ Pfloat
Tn−2

= N.

Therefore (mathematical induction): Pfloat
Tj

= N. One can also show

Pfloat
t = N for all t ≤ T .
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Interest Rate Swap

An interest rate swap is a derivative contract which exchanges one
stream of future interest payments for another stream based on a
specified principal amount. Interest rate swaps usually involve the
exchange of a fixed interest rate s(T ) for a floating rate Lt .

How should the par swap rate s(T ) be chosen such that the price of
the contract is zero at initiation?

An interest rate swap is equivalent to the exchange of the coupon
payments (but not the notionals) of a coupon bond against those of a
floating rate note.
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Par Swap Rate

The swap rate must be chosen such that both products have the
same price

Ps
0(T )︸ ︷︷ ︸

Price of a Coupon bond

!
= N︸︷︷︸

Price of a FRN

Choose s(T ) such that the market is free of arbitrage, i.e.,

N =
n∑

i=1

s0(T )∆Ti−1
NP0(Ti ) + NP0(T )

=⇒ 1 =
n∑

i=1

s0(T )∆Ti−1
P0(Ti ) + P0(T )

=⇒ s0(T ) =
1− P0(T )∑n

i=1∆Ti−1
P0(Ti )

The mapping T 7→ st(T ) is the swap curve at time t.
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Value of a Swap

While the par swap rate s0(T ) is chosen such that the value of the
swap at initiation is zero, the swap value will be changing over time.

We denote the time-t value of a payer swap (i.e., holder is the
counterparty that pays the fixed interest) by V payer

t . By construction
V payer
0 = 0.

If t > 0, the value of this swap equals the difference between the
floating leg and the fixed leg, i.e.,

V payer
t = V float

t − V fixed
t

= N[1− Pt(T )] − s0(T )
n∑

i=1

∆Ti−1
NPt(Ti )

= st(T )
n∑

i=1

∆Ti−1
NPt(Ti ) − s0(T )

n∑
i=1

∆Ti−1
NPt(Ti )
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Value of a Swap

Consequently, the value of a payer swap is

V payer
t = [st(T )− s0(T )]

n∑
i=1

∆Ti−1
NPt(Ti )

The value of a receiver swap (holder pays variable interest) at time t
is just V receiver

t = −V payer
t .

Moral: Swaps can be priced without an interest rate model. All we
need is the empirically observable discount curve, i.e., prices of
zero-coupon bonds.

A payer swaption is a contract that entitles the holder to enter, at a
given time in the future, a payer swap with a specified duration and a
swap rate that is determined in advance (the strike).

To price swaptions, we need a model that describes the evolution of
the swap curve over time. −→ Swap Market Model.
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Bond Options

A European bond option is a contract between two counterparties,
whereby the buyer (holder) has the right to buy (Call option) or to
sell (Put option) the underlying bond from/to the seller (stillholder)
at a predetermined strike price K at its maturity T1.

Option with maturity in T1 on a zero bond with maturity in T2 > T1:

CallT1(PT1(T2)) = (PT1(T2)− K )+

PutT1(PT1(T2)) = (K − PT1(T2))
+

Put-call-parity for European bond options

Putt = Callt − Pt(T2) + K · Pt(T1).

To price bond options, we need a model that describes the evolution
of the bond prices over time. −→ Short Rate models, HJM
framework.
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Interest Rate Options

Interest rate options are options where the underlying is an interest
rate.

If the underlying interest rate exceeds (caplet) or falls below (floorlet)
a certain boundary at maturity, the holder of the option can claim an
interest payment.

Caplet with maturity Ti and strike rate LC on a notional N has payoff
at time Ti :

(LTi−1
− LC︸︷︷︸
strike

)+∆Ti−1
N

Cap: Portfolio of caplets
⇒ hedge against increasing interest rates

Floor: Portfolio of floorlets with payoffs (LF − LTi−1
)+∆Ti−1

N
⇒ hedge against decreasing interest rates.

To price swaptions, we need a model that describes the evolution of
the LIBOR rates over time. −→ LIBOR Market Model.
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Relation between Interest Rate Options and Swaps

While an interest rate swap provides a perfect hedge against
fluctuating interest rates, a caplet only insures against rising interest
rates and a floorlet against shrinking interest rates.

Consider a long-short portfolio of caplets and floorlets with identical
strike rates L = LC = LF :[

(LTi−1
− L)+ − (L− LTi−1

)+
]
∆Ti−1

N

=
[
max(LTi−1

, L)− L−max(LTi−1
, L) + LTi−1

]
∆Ti−1

N

=
[
LTi−1

− L
]
∆Ti−1

N

=LTi−1
∆Ti−1

N − L∆Ti−1
N

This is identical to an exchange of a variable interest rate and a fixed
interest rate, i.e., a one-period interest rate swap.

Interest rate swaps can thus be decomposed into a long-short
portfolio of caps and floors. ”Cap – Floor = Payer Swap”
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Relation between Bond Options Interest Rate Options

Caplet with maturity Ti and strike rate LC on a notional N has payoff
at time Ti :

(LTi−1
− LC )

+∆Ti−1
N

=
( 1

∆Ti−1

[ 1

PTi−1
(Ti )

− 1
]
− LC

)+
∆Ti−1

N

=
( 1

PTi−1
(Ti )

− 1−∆Ti−1
LC

)+
N

The caplet value at the fixing date Ti−1 is(
1− PTi−1

− PTi−1
∆Ti−1

LC

)+
N =

(
N − PTi−1

(1 + ∆Ti−1
LC )N

)+

A caplet can be viewed as a put option on a zero-coupon bond that
matures at time Ti with face value (1 + ∆Ti−1

LC )N. The expiry date
of the option is Ti−1, and the strike is N.
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Modeling the Term Structure of Interest Rates

We first consider default-free (and perfectly liquid) bonds
corresponding to the discount factors and interest rates.

We start with the benchmark no arbitrage Vasicek model.

We then generalize this benchmark model, focusing on so-called affine
term structure models.

We will also study the Heath-Jarrow-Morton framework and the
LIBOR market model.

The pricing of bonds can be influenced significantly by credit risk
(and liquidity risk) −→ Chapter 7.
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Wishlist for Term Structure Models

A good term-structure model should be able to

reproduce the currently observed term structure (i.e., bond prices).

reproduce currently observed prices of other term structure products.

generate (under P) reasonable future term structures (for instance
does not generate (very) negative interest rates).

capture volatilities of rates for different maturities and correlations
between them.

be tractable; allows quick pricing of popular term structure derivatives
such as swaptions and interest rate caps.
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Short Rate Models

A generic short-rate model for the evolution of the term structure can
be written as follows:

dXt = µX (t,Xt)dt + σX (t,Xt)dW , rt = h(t,Xt)

Money Market Account: dMt = Mtrtdt

A T -bond is just a derivative with constant payoff PT (T ) = 1 at
maturity T . Pricing under Q:

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
The TSIR is thus given by

Rt(T ) = − 1

T − t
logEQ

t

[
e−

∫ T
t rsds

]
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Vasicek model under P and under Q

Vasicek (1977) originally chosed an Ornstein-Uhlenbeck process for
the short rate under P:

drt = a(b − rt) dt + σ dWt , dMt = Mtrtdt

This model (X = r , Y = M) satisfies the NA criterion and λ can be
chosen arbitrarily.

Assuming that the market price of risk associated to Wt is a constant
λ yielding dWQ

t = λ dt + dWt (where WQ
t is a BM under Q), and

drt = [a(b − rt)− σλ] dt + σ dWQ
t

which can be written in the form

drt = a(bQ − rt) dt + σ dWQ
t , bQ = b − λ

σ

a
.

This is the model under Q as we used it before.
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”Typical” Paths of the Vasicek Model
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Problem: Solving Ornstein-Uhlenbeck

Show the following properties of the Ornstein-Uhlenbeck process
dXt = a(b − Xt) dt + σ dWt :

1 Xt = X0e
−at + b(1− e−at) + σ

∫ t

0
e−a(t−s)dWs

2 Xt ∼ N
(
µ(Xt), σ(Xt)

2
)
with

µ(Xt) = X0e
−at + b(1− e−at) and σ2(Xt) =

1−e−2at

2a σ2

Solution:
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Problem: Solving Ornstein-Uhlenbeck
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Problem: Solving Ornstein-Uhlenbeck
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Bond Price in the Vasicek Model

We know that the Vasicek model is free of arbitrage, hence we can
formulate it under Q:

drt = a(bQ − rt) dt + σ dWQ
t , bQ = b − λ

σ

a
.

We know that the price of a T -bond is just a derivative with constant
payoff PT (T ) = 1 at maturity T . Pricing under Q:

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
Question: What would be the pricing relation under P?

We first calculate EQ
t

[
1

MT

]
= EQ

t

[
e− logMT

]
.
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Bond Price in the Vasicek Model

Short rate dynamics: drt = a(bQ − rt) dt + σ dWQ
t

Dynamics of the log-MMA: d logMt = rtdt

Consequently,

d(rt + a logMt) = a(bQ − rt) dt + σ dWQ
t + artdt = abQ dt + σ dWQ

t

Integrating and some algebra yields:

logMt =
1

a

[
abQt + σWQ

t − (rt − r0)
]

We know that rt = r0e
−at + bQ(1− e−at) + σ

∫ t
0 e−a(t−s)dWQ

s .
Substituting this solution into logMt yields

logMt =
1

a

[
abQt + σWQ

t + r0

−
(
r0e

−at + bQ(1− e−at) + σ

∫ t

0
e−a(t−s)dWQ

s

)]
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Bond Price in the Vasicek Model

Therefore, logMt follows a normal distribution under Q with

EQ[logMt ] = bQt +
1

a

(
1− e−at

)
(r0 − bQ)

varQ[logMt ] =
σ2

a2

∫ t

0

[
1− e−a(t−s)

]2
ds

=
σ2

a2

[
t − 2

a

(
1− e−at

)
+

1

2a

(
1− e−2at

)]
In turn, − logMT is normally distributed as well.

Now, we can calculate EQ
t

[
1

MT

]
= EQ

t

[
e− logMT

]
, where e− logMT is

log-normally distributed, i.e.,

EQ
t

[
e− logMT

]
= e−EQ[logMT ]+

1
2 var

Q[logMT ]
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Bond Price in the Vasicek Model

Substituting everything we know into this expression, we obtain

EQ[e− logMT
]
= exp

(
−

[
bQ − σ2

2a2
]
T − 1− e−aT

a

[
r0 − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2aT

2a

)
In turn, the current price of a T -bond in the Vasicek model is

P0(T ) = exp
(
−

[
bQ − σ2

2a2
]
T − 1− e−aT

a

[
r0 − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2aT

2a

)
with bQ = b − σλ

a .
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The Yield Curve

The yield curve now follows straightforwardly:

R0(T ) = − 1

T
logP0(T )

=
[
bQ − σ2

2a2
]
+

1− e−aT

aT

[
r0 − bQ +

σ2

a2
]
− σ2

2a2
1− e−2aT

2aT

Taking the limit for super long-term bonds, i.e., T → ∞

R0 := lim
T→∞

R0(T ) = bQ − σ2

2a2

Therefore,

R0(T ) = R0 +
1− e−aT

aT
(r0 − R0) +

σ2

2a2
(1− e−aT )2

2aT
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The Yield Curve
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Empirical Performance

Due to its normality property the Vasicek model is very tractable both
analytically and numerically. In particular, the model can be simulated
exactly by the Euler-scheme.

The empirical performance of the Vasicek model is bad.

The current, observed term structure typically is not matched very well,
i.e.,

R0(T ) = R0 +
1− e−aT

aT
(r0 − R0) +

σ2

2a2
(1− e−aT )2

2aT

is typically not very close to the observed one at time t = 0
This is particularly pronounced if the term structure has a hump.

This issue can be addressed by the Hull-White model

drt = a(t)
(
bQ(t)− rt

)
dt + σ(t) dWQ

t

Using this approach we can ”fit the initial term structure”.
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Empirical Performance
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Remark: (Non)-negativity

In the Vasicek model, interest rates (yields) can become negative
without lower bound.

This issue can be addressed by the Cox-Ingersol-Ross model

drt = a
(
bQ − rt

)
dt + σ

√
rt dW

Q
t ,

which ensures that interest rates stay positive.

One might want to have negative interest rates, but with a lower
bound, e.g.,

dXt = a
(
bQ − Xt

)
dt + σ

√
Xt dW

Q
t , rt = Xt − ℓ

The CIR model is much less tractable than the Vasicek model
(calculations get much more involved, SDE does not possess an
explicit solution, distribution is non-central χ2, and simulation is
challenging).
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Remarks

We have only studied the case t = 0, but this procedure also works
for t > 0.

We obtain

Pt(T ) = exp
(
−

[
bQ − σ2

2a2
]
(T − t)− 1− e−a(T−t)

a

[
rt − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2a(T−t)

2a

)
Consequently, the price can be written as

P(t, r ;T ) = exp
(
A(t,T ) + B(t,T )rt

)
for functions A(t,T ) and B(t,T ) = −1

a

(
1− e−a(T−t)

)
.

Any short rate model that leads to such a representation of the bond
prices will be called an affine short rate model.
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Problem: Estimation of the Vasicek Model

A standard way to estimate the process rt under P is to run a
regression

rt+∆t = α+ βrt + εt+∆t ,

estimated using OLS (under the usual assumptions).

1 What is the link between α, β, and s2 = var(εt+∆t) and a, b, and σ?

2 Implement a code that estimates the parameters a, b, and σ for given
interest rate data and visualize the regression.

3 Simulate trajectories for the Vasicek model estimated in (2).

Solution: (1)
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Problem: Estimation of the Vasicek Model
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Problem: Data

0 5 10 15 20 25 30

Time t

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
r
t

(Simulated) short rate data generated with r0 = 0.01, a = 0.25, b = 0.02,
σ = 0.015, ∆t = 0.1.
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Problem: OLS Regression (2)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

r
t

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
r t+

Simulated model with α̂ = 8.6844e − 04, β̂ = 0.9645, ŝ = 0.015
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Problem: Simulation (3)

0 5 10 15 20 25 30

Time t

0.01

0.015

0.02

0.025

0.03

0.035
r
t

Regression line with â = − log β̂
∆t = 0.3610, b̂ = α̂

1−β̂
= 0.0245,

σ = ŝ
√

2â/(1− e−2â∆t) = 0.005.
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Recovering observed bond prices

One obvious drawback of the Vasicek model is that it in general does
not match observed bond prices. We describe a way to mend this
which actually can be applied to any term structure model.

Consider a term structure model of the general form

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

rt = h(t,Xt).

Suppose that the forward curve at current time 0 as produced by the
model (F un

0 (T ); “un” for “unadjusted”) does not match the observed
forward curve (F obs

0 (T )). Modify the model as follows:

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

rt = h(t,Xt) + F obs
0 (t)− F un

0 (t).

Now the model does match the observed forward curve, and hence
also the spot yield curve.
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Simplest example

The simplest term structure model is the one in which the short rate
is constant: rt = r . The forward curve is given in this case by

F un
0 (T ) = − d

dT
log P0(T ) = − d

dT
log e−rT = r .

Using the recipe described on the previous slide, we can modify the
model so that it matches the current term structure. The modified
short rate model is:

rt = F obs
0 (t).

This is still a deterministic model. It matches currently observed bond
prices. But it will not match the prices of swaptions, for instance.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 195 / 259



Adjusting the Vasicek model

Now take the Vasicek model (under Q)

drt = a(bQ − rt) dt + σ dWQ
t .

The corresponding forward curve at time 0 is

F un
0 (r0,T ) = e−aT r0 +

(
1− e−aT

)
bQ − σ2

2a2
(
1− e−aT

)2
.

The modified version that matches the current term structure is
(rename the original rt to Xt)

dXt = a(bQ − Xt) dt + σ dWQ
t

rt = Xt + F obs
0 (t)− F un

0 (X0, t).
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Rewrite the model

The modified Vasicek model can be rewritten by taking the
differential of rt :

drt = dXt +
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt

= a(bQ − Xt) dt +
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt + σ dWQ

t

= a
(
bQ − rt + F obs

0 (t)− F un
0 (t)

)
dt

+
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt + σ dWQ

t .

To compute aF un
0 (t) + d

dtF
un
0 (t), use:(

a+
d

dt

)
(e−at) = 0.
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Result: Hull-White model

From F un
0 (T ) = e−aT r0 +

(
1− e−aT

)
bQ − σ2

2a2
(
1− e−aT

)2
we get

aF un
0 (t) +

d

dt
F un
0 (t) = abQ − σ2

2a

(
1− e−2at

)
.

The modified Vasicek model becomes

drt =
(
θ(t)− art

)
dt + σ dWQ

t

with

θ(t) = aF obs
0 (t) +

d

dt
F obs
0 (t) +

σ2

2a

(
1− e−2at

)
.

This is known as the one-factor Hull-White model.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 198 / 259



Affine Term Structure Models

A term structure model is said to be affine if the yield curves that it
produces are of the form

Rt(T ) = α(t,T ) + β(t,T )′Xt

or equivalently,

Pt(T ) = eA(t,T )+B(t,T )′Xt

with α(t,T ) = −A(t,T )
T−t , β(t,T ) = −B(t,T )

T−t

Notation:

α(t,T ) : scalar

β(t,T ) : vector of length n

Xt : n-dimensional process of state variables at time t
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Examples for Affine Term Structure Models

A sufficient condition for a model to be affine is

dXt =
(
Ã(t)Xt − g(t)

)
dt + B̃(Xt)dW

Q
t , rt = h(t)′Xt

Notation:
Xt : n-dimensional process of state variables at time t

Ã(t) : n × n-matrix

B̃(Xt) : n × k matrix such that B̃(Xt)B̃(Xt)
′ is affine in Xt

g(t), h(t) : vectors of length n

WQ : k-dimensional standard Brownian motion under Q

Examples (rt = Xt):

Black-Karasinski: d(log Xt) = a(bQt − log Xt) dt + σ dWQ
t

CIR: dXt = a(bQ − Xt)dt + σ
√
XtdW

Q
t

Dothan: dXt = Xt(a
Qdt + σdWQ

t )
Ho-Lee: dXt = σ2tdt + σdWQ

t

Vasicek / Hull White: dXt = a(bQ − Xt)dt + σdWQ
t
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Term Structure Equation

Remember that bond prices are contingent claims on the short rate
with terminal value of 1.

Let p(t,X ;T ) denote the time-t price of a T -bond. It follows from
the Feynman Kac Theorem that bond prices satisfy the following PDE

∂p

∂t
+∇p · (ÃX − g) + 1

2 tr
(
Hp B̃(X )B̃(X )′

)
= (h′X )p

s.t. p(T ,X ;T ) = 1

Since the model is affine, we can rewrite B̃(X )B̃(X )′ = C̃ + D̃ X .

∂p

∂t
+∇p · (ÃX − g) + 1

2 tr
(
Hp(C̃ + D̃ X )

)
= (h′X )p

In affine models, bond prices are given by

p(t,X ;T ) = eA(t,T )+B(t,T )′Xt

that can be substituted into the TSE yielding ODEs for A and B s.t.
A(T ,T ) = B(T ,T ) = 0.
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Example: Vasicek Revisited

The TSE is given by

∂p(t, r ;T )

∂t
+
∂p(t, r ;T )

∂r
a(bQ − r) + 1

2

∂2p(t, r ;T )

∂r2
σ2 = p(t, r ;T )r

Substituting the conjecture into the TSE

p[Ȧ(t,T ) + Ḃ(t,T )r ] + pB(t,T )a(bQ − r) + 1
2pB(t,T )2σ2 = pr

Dividing by p and separating yields

Ȧ(t,T ) + B(t,T )abQ + 1
2B(t,T )2σ2 + r [Ḃ(t,T )− aB(t,T )− 1] = 0

We obtain two ODEs s.t. A(T ,T ) = B(T ,T ) = 0:

Ȧ(t,T ) + B(t,T )abQ + 1
2B(t,T )2σ2 = 0

Ḃ(t,T )− aB(t,T )− 1 = 0
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Example: Vasicek Revisited

Linear ODE for B: Ḃ(t,T )− aB(t,T )− 1 = 0 (e.g., Feynman-Kac):

B(t,T ) =

∫ T

t
e−a(s−t)(−1)ds = −1

a

(
1− e−a(T−t)

)
Integrating A:

A(t,T ) =

∫ T

t
B(s,T )abQ + 1

2B(s,T )2σ2ds

= . . .

Bond price as it was before

P(t, r ;T ) = exp
(
A(t,T ) + B(t,T )rt

)
.
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Example: Cox-Ingersol-Ross

The TSE is given by

∂p(t, r ;T )

∂t
+
∂p(t, r ;T )

∂r
a(bQ − r) + 1

2

∂2p(t, r ;T )

∂r2
σ2r = p(t, r ;T )r

Substituting the conjecture into the TSE

p[Ȧ(t,T ) + Ḃ(t,T )r ] + pB(t,T )a(bQ − r) + 1
2pB(t,T )2σ2r = pr

Dividing by p and separating yields

Ȧ(t,T ) + B(t,T )abQ + r [Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1] = 0

We obtain two ODEs s.t. A(T ,T ) = B(T ,T ) = 0:

Ȧ(t,T ) + B(t,T )abQ = 0

Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1 = 0
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Example: Cox-Ingersol-Ross

Now, the ODE for B is much more involved, a so-called Riccati
equation.

Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1 = 0

For constant coefficients, by guessing B(t,T ) = k Ψt
Ψ for a constant

k , and a function Ψ, it can be transformed into a linear second-order
ODE with well-known solution.

In the end, we obtain:

B(t,T ) = − 2(eγ(T−t) − 1)

eγ(T−t)(γ + a) + γ − a
, γ =

√
a2 + 2σ2

Integrating A:

A(t,T ) =

∫ T

t
B(s,T )abQds =

2abQ

σ2
log

( 2γe0.5(a+γ)(T−t)

(γ + a)(eγ(T−t) − 1) + 2γ

)
A Hull-White-type extension of the CIR model would make the
calculations extremely messy.
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Remarks on Option Pricing

It is also possible to derive closed-form solutions for European call
and put options on zero bonds in affine term structure models.

The option pricing formulas are very similar to the Black-Scholes
formula, but we need another EMM to derive them.

As for bond prices, the option pricing formula for the CIR is
significantly more involved than for the Gaussian models.

We will address this issue in Section 16.

It is also possible to derive closed-form option prices for claims on the
short rate, i.e., options of the form

C (T , rT ) = Φ(rT ).
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Empirical Performance
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Nelson-Siegel Model

Single-factor short rate models are not sufficient to model the whole
TSIR.

In the Nelson-Siegel model, the term structure is fitted by a
deterministic function with four parameters rather than a dynamic
short rate.

Rt(T ) = β0,t +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

This implies the forward rate

Ft(T ) = β0,t + e−at(T−t)β1,t + at(T − t)e−at(T−t)β2,t

We use the notation τt = 1/at .
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Nelson-Siegel Model

Rt(T ) = β0,t1 +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

β0,t : long rate, β0,t + β1,t : short rate, β2,t : size of hump,
τt = 1/at : determines the time of hump
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Nelson-Siegel Model
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Dynamic Nelson-Siegel

Huge drawback: The Nelson-Siegel term structure cannot be
implied by any arbitrage-free short-term model.

Idea: Construct a version of the Nelson-Siegel model with factors
β0,t , β1,t , β2,t that evolve dynamically over time such that the model
reproduces the Nelson-Siegel term structure as close as possible.

Introduce a three-dimensional state process Xt = (β0,t , β1,t , β2,t)
′,

and assume

dXt = µ(t,Xt)dt + σ(t,Xt)dW
Q
t , rt = ρ0(t) + ρ1(t)

′Xt

One can show that for a particular affine parameter choice (see
Christensen et al. 2010), the resulting yield curve is

Rt(T ) = β0,t +
1− e−a(T−t)

a(T − t)
β1,t +

(1− e−a(T−t)

a(T − t)
− e−a(T−t)

)
β2,t

− C (t,T )

T − t
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Dynamic Nelson-Siegel Model

The resulting model is free of arbitrage, and, due to its affine
structure, it has a closed-form solution.
The empirical performance of this arbitrage-free Nelson-Siegel model
(AFNS) is very good.
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(Nelson-Siegel-)Svensson Model

Modification of the Nelson-Siegel Model with six parameters

Rt(T ) = β0,t +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

+
(1− e−bt(T−t)

bt(T − t)
− e−bt(T−t)

)
β3,t

This implies the forward rate

Ft(T ) = β0,t + e−at(T−t)β1,t + at(T − t)e−at(T−t)β2,t

+ bt(T − t)e−bt(T−t)β3,t
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Dynamic (Nelson-Siegel-)Svensson Model

Like Nelson-Siegel, also Svensson can be turned into a multi-factor
model, with four factors.

The resulting dynamic Svensson model is also not arbitrage-free (by
construction) for any short-rate model.

But, the dynamic four -factor Svensson model can also be turned into
an arbitrage-free affine five-factor term structure model. However, it
turns out that this requires the introduction of an extra (slope)
factor, together with a non-random correction term.

Rt(T ) = β0,t +
1− e−a(T−t)

a(T − t)
β1,t +

(1− e−a(T−t)

a(T − t)
− e−a(T−t)

)
β2,t

+
1− e−b(T−t)

b(T − t)
β4,t +

(1− e−b(T−t)

b(T − t)
− e−b(T−t)

)
β3,t

− C (t,T )

T − t
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Calibration of the Svensson Model

Given a set of observed bond prices Pobs
0 (C ,N,T1, . . . ,Tn) at time 0.

Calibrate the six parameters π = {β0, β1, β2, β3, a, b} such that
theoretical prices

Pmodel
0 (C ,N,T1, . . . ,Tn) =

n∑
i=1

Ce−R0(Ti )Ti + Ne−R0(Tn)Tn

with

R0(T ) = β0 +
1− e−aT

aT
β1 +

(1− e−aT

aT
− e−aT

)
β2

+
(1− e−bT

bT
− e−bT

)
β3

closely match the observed prices.
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Calibration of the Svensson Model

This can be achieved by an OLS minimization over the parameter set
π = {β0, β1, β2, β3, a, b}:

π̂ = argmin
π

J∑
j=1

wj

[
Pobs,j
0 (C j ,N j ,T j

1, . . . ,T
j
n)

− Pmodel ,j
0 (C j ,N j ,T j

1, . . . ,T
j
n)
]2

ECB estimates the six Svensson parameters daily.

The dynamic versions of those models can be estimated by principal
component analysis.
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Motivation

So far, we have studied interest rate models where the short rate r is
the only explanatory variable.

Main advantages:

Specifying r as the solution of an SDE allows us to use Markov process
theory, so we may work within a PDE framework.
In particular it is often possible to obtain analytical formulas for bond
prices and derivatives.

Main disadvantages:

It is hard to obtain a realistic volatility structure for the forward rates
without introducing a very complicated short rate model.
As the short rate model becomes more realistic, the inversion of the
yield curve becomes increasingly more difficult.

Arbitrage-free Nelson-Siegel Models require more state variables. The
HJM-framework goes beyond that idea and models the whole forward
curve.
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Heath-Jarrow-Morton

The HJM-framework is not a specific model, but a framework for
modeling the forward rates.

We will see that the framework contains the short-rate models as
special cases.

P-dynamics of the forward curve:

dXt = µX (t,Xt)dt + σX (t,Xt)dWt , Ft(T ) = h(t,T ,Xt)

rt = h(t, t,Xt)

where the initial forward curve F0(T ) = h(0,T ,X0) can be observed
on the market.

The HJM framework can, by construction, match the initial term
structure.
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Heath-Jarrow-Morton

The dynamics of the forward rate follow from Itô’s lemma:

dFt(T ) = dh(t,T ,Xt) = µF (t,T ,Xt)dt + σF (t,T ,Xt)dWt

Therefore,

Ft(T ) = F0(T ) +

∫ t

0
µF (s,T ,Xs)ds +

∫ t

0
σF (s,T ,Xs)dWs

rt = F0(t) +

∫ t

0
µF (s, t,Xs)ds +

∫ t

0
σF (s, t,Xs)dWs

One can show that under Q, the drift terms are fully determined by
the specification of the volatility terms σF (t,T ,Xt), and more
precisely ...
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Heath-Jarrow-Morton

Heath-Jarrow-Morton Drift Condition

Assume that the induced bond market is arbitrage free. Then there exists
a k-dimensional column-vector process λ(t,T ,Xt) (market price of risk)
such that

µF (t,T ,Xt) = σF (t,T ,Xt)

∫ t

0
σF (s,T ,Xs)ds + σF (t,T ,Xt)λ(t,T ,Xt)

I skip the proof, and focus on the implications:

Q-dynamics of the forward curve:

dFt(T ) = [µF (t,T ,Xt)− σF (t,T ,Xt)λ(t,T ,Xt)︸ ︷︷ ︸
µQF (t,T ,Xt)

]dt + σF (t,T ,Xt)dW
Q
t

= σF (t,T ,Xt)
(∫ t

0
σF (s,T ,Xs)ds

)
dt + σF (t,T ,Xt)dW

Q
t
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Heath-Jarrow-Morton

Interest Rates under Q

Ft(T ) = F0(T ) +

∫ t

0
σF (s,T ,Xs)

(∫ s

0
σF (τ,T ,Xτ )dτ

)
ds

+

∫ t

0
σF (s,T ,Xs)dW

Q
s

rt = Ft(t)

Recipe for the HJM framework:
1 Specify, by your own choice, the volatilities σF .
2 Determine the drift rate of forward rates under Q:
µQ
F (t,T ,Xt) = σF (t,T ,Xt)

∫ t

0
σF (s,T ,Xs)ds.

3 Go to the market and observe today’s forward rate structure F0(T ).
4 Calculate or simulate the evolution of the term structure Ft(T ).
5 Determine bond prices Pt(T ) = exp(−

∫ T

t
Ft(s)ds).

6 Calculate prices of interest rate derivatives.
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Problem: Special Cases

1 Suppose the forward rate volatility is given by σF (t,T ,Xt) = σ.
Show that this specification implies the Ho-Lee model.

2 Suppose the forward rate volatility is given by
σF (t,T ,Xt) = σe−a(T−t). Show that this specification implies the
Hull-White model.

3 Show that if σF (t,T ,Xt) is a deterministic function of t and T , all
short rates and forward rates are normally distributed. Besides, all
bond prices are log-normally distributed.

Solution:
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Motivation

Since the seminal work of Black (1976) practitioners have been using
the Black76-formula for caplets and floorlets.

A caplet with maturity Ti and strike rate LC on a notional N has
payoff at time Ti :

CTi
= (LTi−1

− LC )
+∆Ti−1

N

where LTi−1
denotes the spot LIBOR rate for [Ti−1,Ti ].

Black (1976) postulates the following pricing formula for t ≤ Ti−1:

Ct = ∆Ti−1
Pt(Ti )Lt(Ti−1,Ti )N · Φ(d1)− Pt(Ti ) · LC∆Ti−1

N · Φ(d2)

where d1 and d2 are very similar to the terms in the Black-Scholes
model.
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The T -Forward Measure

Recall: Numéraire-dependent pricing formula

Ct = NtE
QN
t

[CT

NT

]
.

We have used

Q associated to the MMA
P associated to the numéraire portfolio
QS associated to the stock

For the pricing of interest rate options, it has proven to be useful to
use T -bonds with price Pt(T ) as numéraire.

The corresponding EMM is the so-called T -forward measure QT .

Ct = Pt(T )EQT
t

[
CT

]
.

This measure disentangles discounting and the calculation of the
expectation.
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Recall: Numéraire-dependent pricing formula

Ct = NtE
QN
t

[CT

NT

]
.

We have used

Q associated to the MMA
P associated to the numéraire portfolio
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Problem: T -Forward Measure

Prove that under QT , the instantaneous forward rate F0(T ) is the
expected future short rate rT , i.e.,

F0(T ) = EQT [rT ].

Solution:
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LIBOR Market Model

Model the LIBOR forward rates Lt(Ti−1,Ti ) such that they are
log-normally distributed under the Ti -forward measure.

The LIBOR market model:

dLt(Ti−1,Ti ) = Lt(Ti−1,Ti )σi (t)
′dW

QTi
t

where σi (t) ∈ Rk , WQTi is a k-dimensional Brownian motion.

Remark: From the definition it is not obvious that, given a
specification of σi (t), there exists a corresponding LIBOR market
model. However, it does!

Idea: Model all LIBOR rates under a common reference measure, the
terminal measure QT with T = Tn

dLt(Ti−1,Ti ) = µi (t, Lt)dt + Lt(Ti−1,Ti )σi (t)dW
QT
t
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The Drift Condition

If one chooses the drift rate appropriately, one obtains the desired
LIBOR market specification

dLt(Ti−1,Ti ) = Lt(Ti−1,Ti )σi (t)
′dW

QTi
t

One can show that the required drift specification is

µi (t, Lt) = −Lt(Ti−1,Ti )
n∑

k=i+1

∆Tk−1

1 + Lt(Tk−1,Tk)∆Tk−1

σi (t)
′σk(t),

µn(t, Lt) = 0.

Takeaway: We can model LIBOR rates under the common terminal
measure QT such that LIBOR forward rates Lt(Ti−1,Ti ) are
log-normally distributed martingales under ”their” Ti -forward
measure QTi

.
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Modeling Choices

To complete the LIBOR model, one still needs to specify the number
k of Brownian motions and the volatilities σi (t).

The number k is usually chosen in the range from one to three
(correlation does not affect the prices of plain vanilla options, but of
more complicated products).

The volatilities σi (t) are obtained by calibration to observed price
data, i.e., they are implied volatilities to match prices of interest rate
options. Dependence on time t is often allowed, to ensure sufficient
flexibility. σi (t) is typically a piecewise constant scalar function with
jumps at the reset dates.

Use this calibrated model to determine the prices of more complex
products.

Note: the LIBOR market model does not specify the short rate
process and can only price a limited range of term structure products
in closed-form.
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The Black76 Formula

Under the Ti -forward measure, the LIBOR forward rate Lt(Ti−1,Ti )
is a martingale and it is log-normally distributed. Hence, we are in a
similar situation as in the Black-Scholes model.

Straightforward calculations show that the price of a caplet is given by

Ct = Pt(Ti )
[
Lt(Ti−1,Ti ) · Φ(d1)− LC · Φ(d2)

]
∆Ti−1

N

where

d1 =
log

(Lt(Ti−1,Ti )
LC

)
+ 1

2Σi (t,Ti−1)
2

Σi (t,Ti−1)

d2 = d1 − Σi (t,Ti−1)

Σi (t,Ti−1)
2 =

∫ Ti−1

t
∥σi (s)∥2ds
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Comparison to Black-Scholes
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Some Remarks

There is a one-to-one mapping between the volatility and the caplet
price. There is no ambiguity in quoting the price of a caplet simply by
quoting its ”Black volatility” or implied volatility.

Caps and floors have the same implied volatility for a given strike.

As negative interest rates became a possibility, the Black model
became increasingly inappropriate. Many variants have been
proposed, including shifted log-normal and normal, though a new
standard is yet to emerge.

There is a very general option pricing formula for a European call
option with strike K and maturity T on an underlying S . One can
show that under mild assumptions the price of a European call option
has always the form

Ct = StQS(ST > K )− Pt(T )KQT (ST > K ).

where QS is an EMM that takes the underlying as numéraire, and QT

is the T -forward measure.
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General Option Pricing Formula

This formula holds for any arbitrage-free financial market model.

Suppose the process Ŝt =
St

Pt(T ) satisfies a stochastic differential
equation of the form

dŜt = Ŝtµ(t,T )dt + Ŝtσ(t,T )dWt ,

Then, the price of the call option is

Ct = StN(d1)− Pt(T )K N(d2)

with

d1 =
log

(
St

K Pt(T )

)
+ 1

2Σ(t,T )2

Σ(t,T )

d2 = d1 − Σ(t,T )

Σ(t,T )2 =

∫ T

t
∥σ(s,T )∥2ds
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Problem: Option Pricing in the Hull-White Model

1 Derive the price of a European call option on a T2-bond with strike
price K and maturity in T1 < T2 in the Hull-White model,

drt = a(bQ(t)− rt)dt + σdWQ
t

2 Explain the differences between your result and the option price in the
Vasicek model.

Solution:
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Problem: Option Pricing in the Hull-White Model
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Swap Market Model

The swap market model is a variant of the LIBOR market model.

In the swap market model, par swap rates are modeled to be
log-normally distributed, rather than LIBOR rates.

The swap market model is commonly used to price swaptions, i.e.,
options on swap contracts, for which a variant of the Black76 formula
exists.

It can be shown that LIBOR market models and swap market models
are incompatible, i.e., par swap rates are not log-normally distributed
in the LIBOR market model, and LIBOR rates are not log-normally
distributed in swap market models.
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