Part III

Contingent Claim Pricing

European / American Options

- This chapter studies examples for contingent claim pricing in several tangible specifications of the GSSM.

Option

(1) A European option is a contract between two counterparties, whereby the buyer ($=$ holder) has the right to buy ($=$ Call option) or to sell ($=$ Put option) the underlying from/to the seller (= stillholder) for a predetermined strike price K at its maturity T.
(2) An American option has the feature that the option can be exercised before maturity, i.e., in $[0, T]$.

- Option profile at maturity T on a stock with price process S :

$$
\begin{aligned}
& C_{T}=\left(S_{T}-K\right)^{+}=\max \left\{S_{T}-K, 0\right\} \\
& P_{T}=\left(K-S_{T}\right)^{+}=\max \left\{K-S_{T}, 0\right\}
\end{aligned}
$$

Option Profiles

Table of Contents

(8) Black Scholes Revisited

- The Fastest Way to the Black-Scholes Formula
- Example: Double-barrier Option: Pricing by the BSPDE
(9) Option Pricing in Incomplete Markets
- The Heston Model
- Parameter Choice: Calibration vs. Estimation
(10) Models with Dividends Not relevart fer exminchin
- The Black-Scholes Setting
- General Setting

How to come up with the Black-Scholes Formula

- The Black-Scholes formula is probably the most famous formula in quantitative finance and the starting point of modern financial mathematics.
- Black and Scholes (1973) derive the formula by transforming the BSPDE to the heat equation, which has a well-known solution

$$
r \pi_{C}=\frac{\partial \pi_{C}}{\partial t}+\frac{\partial \pi_{C}}{\partial S} S r+\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} S^{2} \sigma_{S}^{2}
$$

s.t. $\pi_{C}\left(T, S_{T}\right)=\max \left(S_{T}-K, 0\right)$.

- Besides solving the BSPDE, the problem can be tackled by several approaches, e.g.,
- Pricing under the EMM \mathbb{Q}
- Pricing under \mathbb{P} using the SDF / numéraire portfolio
- Taking the limit of a sequence of binomial models
- Splitting the payoff into two parts and tackle them under two different measures

Examples: Pricing Approaches

The Fastest Way to the Black-Scholes Formula

- The European call option has payoff function

$$
C_{T}=\max \left(S_{T}-K, 0\right)=1_{\left\{S_{T} \geq K\right\}}\left(S_{T}-K\right) .
$$

- The price of the European put option with payoff $P_{T}=\max \left(K-S_{T}, 0\right)$ can be obtained from the put-call parity

$$
P_{t}=C_{t}-S_{t}+K \mathrm{e}^{-r(T-t)} .
$$

- We can decompose the call option into two options;
(1) a long position in the stock-or-nothing option which has payoff $1_{\left\{S_{T} \geq K\right\}} S_{T}$
(2) a short position in the cash-or-nothing option which has payoff $1_{\left\{S_{T} \geq K\right\}} K$.
- The price of the call option is determined if we know the prices of the stock-or-nothing option and the cash-or-nothing option.

Cash-or-nothing Option under

- Cash-or-nothing option, $C_{T}^{m}=1_{\left\{S_{T} \geq K\right\}} K$ will be priced under \mathbb{Q} :

NDPF $\frac{C_{0}^{m}}{M_{0}}=\mathbb{E}^{\mathbb{Q}}\left[\frac{C_{T}^{m}}{M_{T}}\right] \stackrel{\mu_{0}=1}{=} \frac{K}{M_{T}} \mathbb{E}^{\mathbb{Q}}\left[1_{\left\{S_{T} \geq K\right\}}\right]=\frac{K}{M_{T}}\left(S_{T} \geq K\right)$.

- Under \mathbb{Q}, the evolution of the stock price is given by

$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}
$$

where $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q}.

- Therefore:

$$
\begin{gathered}
S_{T}=S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z\right), \quad Z \stackrel{\mathbb{Q}}{\sim} N(0,1) \\
\Longrightarrow \mathbb{Q}\left(S_{T} \geq K\right)=\Phi\left(d_{2}\right), \quad d_{2}=\frac{\log \left(S_{0} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} .
\end{gathered}
$$

Stock-or-nothing option under \mathbb{Q}_{S}

- Stock-or-nothing option, $C_{T}^{s}=1_{\left\{S_{T} \geq K\right\}} S_{T}$:

$$
\text { NDPF: } \frac{C_{0}^{s}}{S_{0}}=E^{\mathbb{Q}_{S}}\left[\frac{C_{T}^{s}}{S_{T}}\right]=E^{\mathbb{Q}_{s}}\left[1_{\left\{S_{T} \geq K\right\}}\right]=\mathbb{Q}_{s}\left(S_{T} \geq K\right) .
$$

- Under \mathbb{Q}_{S}, the evolution of the stock price is given by

$$
\mathrm{d} S_{t}=\left(r+\sigma^{2}\right) S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}_{s}}
$$

where $W^{\mathbb{Q} s}$ is a Brownian motion under \mathbb{Q}_{s}.

- Therefore:

$$
\begin{aligned}
& S_{T}=S_{0} \exp \left(\left(r+\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z\right), \quad Z \stackrel{\mathbb{Q} S}{\sim} N(0,1) \\
\Longrightarrow & \mathbb{Q}_{S}\left(S_{T} \geq K\right)=\Phi\left(d_{1}\right), \quad d_{1}=\frac{\log \left(S_{0} / K\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} .
\end{aligned}
$$

The Black-Scholes Formula

$$
C_{0}=S_{0} \mathbb{Q}^{2}\left(S_{T} \geqslant K\right)-D F \cdot K \cdot \widetilde{\mathbb{Q}}\left(S_{T} \geqslant K\right)
$$

- Putting everything together:

$$
C_{0}=C_{0}^{s}-C_{0}^{m}=S_{0} \Phi\left(d_{1}\right)-e^{-r T} K \Phi\left(d_{2}\right) .
$$

- The price of the call option is equal to the current value of the stock times the probability under \mathbb{Q}_{s} that the option will end in the money, minus the current value of the strike times the probability under \mathbb{Q} that the option will end in the money.
- $\frac{S}{S}, \frac{\pi}{S}$ need to be marti-joles mar bis

止: $\quad d S=S[\mu \nu t+\sigma d \omega]$
Q: $\quad d S=S\left[r d t+\sigma d W^{Q}\right]$

$$
\mathbb{Q}^{S}: d S=S\left[\mu^{\mathbb{Q}_{s}} d t+\sigma d \omega^{\mathbb{Q}_{s}}\right]
$$

$$
\begin{aligned}
0 d\left(\frac{\mu}{S}\right) & =M d\left(\frac{1}{s}\right)+\frac{1}{s} d \mu+d \underbrace{\left[\mu, \frac{1}{s}\right]}_{=0} \\
d\left(\frac{1}{s}\right) & =-\frac{1}{s^{2}} d S+\frac{1}{2} \cdot \frac{2}{\delta^{3}} d[s] \\
& =-\frac{1}{s^{x}} \cdot S\left[\mu^{Q_{s}} d t+\left\langle d W^{Q_{s}}\right]+\frac{1}{s^{\gamma^{\gamma}}} S^{2} \sigma^{2} d t\right. \\
& =\frac{1}{s}\left[\left(-\mu^{Q_{s}}+\sigma^{2}\right) d t-\sigma d \omega^{\mathbb{Q}_{S}}\right]
\end{aligned}
$$

Problem: Derive the \mathbb{Q}_{s}-Stock Dynamics

$$
\begin{aligned}
& d\left(\frac{M}{S}\right)=\frac{M}{S}\left[\left(-\mu^{Q_{s}}+\sigma^{2}\right) d t+\sigma d \omega \omega^{Q_{s}}+r d t\right] \\
& \Rightarrow-\mu^{Q_{5}}+\sigma^{2}+r=0 \\
& \Rightarrow \mu^{Q_{s}}=\sigma^{2}+r \\
& \Rightarrow \quad d S=S\left[\left(r+\sigma^{2}\right) d t+\sigma d \omega^{Q_{S}}\right]
\end{aligned}
$$

Option Price versus Intrinsic Value

Critique: Black-Scholes Model

- Volatility, interest rate, expected return are assumed to be constant. \longrightarrow Volatility Smile
- Returns are assumed to be normally distributed. \longrightarrow Underestimation of extreme events.
- Model builds upon a complete market without frictions (no taxes, transaction costs, short-selling constraints, ...).
- Implied volatility \neq historical volatility
- These caveats become visible if one investigates what volatilities are necessary to explain option prices by the Black-Scholes formula.
- Implied volatility is not constant, but depends on K and T.
- If the option is at-the-money, implied volatility is lowest (volatility smile).
- Some of these points can be tackled by adding non-traded state variables to the model.

A Double-barrier Option

- A perpetual up-and-out down-and-in digital double barrier option is a contract that is specified by
- an underlying S_{t} (for instance a stock index)
- a lower barrier L
- an upper barrier U
- a fixed payoff amount K.

- The contract pays the amount K when the stock price S_{t} reaches the lower barrier L, but only if the stock price has not reached the upper barrier first. (i.e., the contract "knocks out" when the stock price S_{t} reaches U.)
- As long as neither the lower nor the upper barrier has been reached, the contract stays alive.
- Therefore the time of expiry of the contract is random (determined in terms of the process S_{t}).

PDE Approach

- Assume that the BS model holds for the stock price S_{t}. The Black-Scholes equation for the pricing function $\pi_{C}\left(t, S_{t}\right)$ is in general

$$
\frac{\partial \pi_{C}}{\partial t}(t, S)+r S \frac{\partial \pi_{C}}{\partial S}(t, S)+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}}(t, S)=r \pi_{C}(t, S)
$$

- Since π_{C} does not depend on t, this reduces to the ODE

$$
r S \frac{\mathrm{~d} \pi_{C}}{\mathrm{~d} S}(S)+\frac{1}{2} \sigma^{2} S^{2} \frac{d^{2} \pi_{C}}{\mathrm{~d} S^{2}}(S)=r \pi_{C}(S)
$$

- Boundary conditions for the up-and-out down-and-in option:

$$
\pi_{C}(U)=0, \quad \pi_{C}(L)=K .
$$

$\pi c=S$

Solving the ODE

- We have a linear homogeneous second-order ODE, so the general solution is a linear combination of two particular solutions.
- These solutions should be self-financing portfolios whose values depend only on S_{t}. One solution is S_{t} itself (obviously!), another is $S_{t}^{-\gamma}$ with $\gamma=2 r / \sigma^{2} . \rightarrow$ Sulshimite in to the ODE and dert:
- The solution is therefore given by

$$
\pi_{C}\left(S_{t}\right)=c_{1} S_{t}+c_{2} S_{t}^{-\gamma}
$$

where the constants c_{1} and c_{2} should be chosen such that

$$
\pi_{C}(U)=c_{1} U+c_{2} U^{-\gamma}=0, \quad \pi_{C}(L)=c_{1} L+c_{2} L^{-\gamma}=K
$$

- This linear system has a unique solution.

Option Price

- Putting everything together yields

$$
\gamma=\frac{2 r}{\sigma^{2}}
$$

$$
\pi_{C}\left(t, S_{t}\right)=\frac{L^{\gamma} K}{U^{\gamma+1}-L^{\gamma+1}}\left(U^{\gamma+1} S_{t}^{-\gamma}-S_{t}\right)
$$

$$
r=0.04, \sigma=0.2, L=50, U=150, K=1
$$

Table of Contents

(8) Black Scholes Revisited

- The Fastest Way to the Black-Scholes Formula
- Example: Double-barrier Option: Pricing by the BSPDE
(9) Option Pricing in Incomplete Markets
- The Heston Model (1993)
- Parameter Choice: Calibration vs. Estimation
(10) Models with Dividends
- The Black-Scholes Setting
- General Setting

An Example: The Heston Model

- Modeling Stochastic Volatility by a CIR process

$$
\begin{aligned}
\mathrm{d} M_{t} & =M_{t} r \mathrm{~d} t \\
\mathrm{~d} S_{t} & =S_{t}\left[\mu \mathrm{~d} t+\sqrt{\nu_{t}} \mathrm{~d} W_{1, t}\right] \quad W_{1}^{\mathbb{Q}}+\lambda_{1} t \\
\mathrm{~d} \nu_{t} & =\kappa\left(\theta-\nu_{t}\right) \mathrm{d} t+\sigma \sqrt{\nu_{t}} \mathrm{~d}\left(\rho \mid W_{1, t}+\sqrt{1-\rho^{2}} W_{2, t}\right)
\end{aligned}
$$

- The model has five input parameters:
- ν_{0}, the initial variance.
- θ, the mean-reversion variance of the stock price
- κ, the mean-reversion speed of the variance of the stock price
- ρ the correlation of the two Wiener processes.
- σ the volatility of the volatility, or 'vol of vol'
- $n=3$ state variables, $k=2$ sources of risk, and $m=2$ assets:

$$
\mu_{X}=\left[\begin{array}{c}
\mu S_{t} \\
r M_{t} \\
\kappa\left(\theta-\nu_{t}\right)
\end{array}\right], \quad \sigma_{X}=\left[\begin{array}{cc}
\sqrt{\nu_{t}} S_{t} & 0 \\
0 & 0 \\
\sigma \rho \sqrt{\nu_{t}} & \sigma \sqrt{\nu_{t}} \sqrt{1-\rho^{2}}
\end{array}\right], \quad \pi_{Y}=\left[\begin{array}{c}
S_{t} \\
M_{t}
\end{array}\right]
$$

Economic Properties

- The model is free of arbitrage: The NA criterion $\mu_{Y}-\pi_{Y} r=\sigma_{Y} \lambda$ yields

$$
\begin{gathered}
\mu_{Y} r \cdot \pi_{Y} \\
{\left[\begin{array}{l}
\mu S \\
r M
\end{array}\right]-r\left[\begin{array}{l}
S \\
M
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\nu_{t}} S & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]}
\end{gathered}
$$

- The market price of stock risk is uniquely determined, $\lambda_{1}=\frac{\mu-r}{\sqrt{\nu_{t}}}$.
- The market price of volatility risk λ_{2} can be chosen arbitrarily.
- The model is obviously incomplete. Thus for any given numéraire, the corresponding EMM is not unique.
- Consequently, neither the numéraire-dependent option pricing formula, nor the PDE approach deliver unique arbitrage-free option prices. They rather depend on the particular choice of λ_{2}.

Change of Measure

- Under \mathbb{Q}, generated by $\left(\lambda_{1} \lambda_{2}\right)$, the model evolves according to

$$
\begin{aligned}
\mathrm{d} S_{t}=S_{t} & {\left[r \mathrm{~d} t+\sqrt{\nu_{t}} \mathrm{~d} W_{1, t}^{\mathbb{Q}}\right] } \\
\mathrm{d} \nu_{t}=[& \kappa\left(\theta-\nu_{t}\right)-\underbrace{\lambda_{1, t} \sigma \rho \sqrt{\nu_{t}}}_{=(\mu-r) \sigma \rho}-\underbrace{\left.\lambda_{2, t} \sigma \sqrt{\nu_{t}} \sqrt{1-\rho^{2}}\right]} \mathrm{d} t \\
& +\sigma \sqrt{\nu_{t}} \mathrm{~d}\left(\rho W_{1, t}^{\mathbb{Q}}+\sqrt{1-\rho^{2}} W_{2, t}^{\mathbb{Q}}\right)
\end{aligned}
$$

- Heston (1993) chooses $\lambda_{2, t}$ such that the drift adjustment is proportional to ν_{t}, i.e., $\lambda \nu_{t}$ for $\lambda \in \mathbb{R}$
- Therefore,

$$
\mathrm{d} \nu_{t}=\left[\kappa\left(\theta-\nu_{t}\right)-\lambda \nu_{t}\right] \mathrm{d} t+\sigma \sqrt{\nu_{t}} \mathrm{~d}\left(\rho W_{1, t}^{\mathbb{Q}}+\sqrt{1-\rho^{2}} W_{2, t}^{\mathbb{Q}}\right)
$$

and there is a closed-form solution for the call option price for every particular choice of $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
& \frac{\partial \pi_{c}}{\partial t}+\frac{\partial \pi_{c}}{\partial S} r S+\frac{\partial \pi_{c}}{\partial v} u^{\mathbb{Q}}\left(\theta^{Q}-v\right) \\
&+\frac{1}{2} \frac{\partial^{2} \pi_{c}}{\partial S^{2}} S^{2} v+\frac{1}{2} \frac{\partial^{2} \pi_{c}}{\partial v^{2}} \sigma^{2} v \\
&+\frac{\partial^{2} \pi_{c}}{\partial S \partial v} S \sqrt{v} \sigma \sqrt{v} \rho=\Gamma \pi_{c} \\
& \pi_{c}(T, S, v)=F(S, v) \frac{\text { eg. }}{}(S-u)^{+}
\end{aligned}
$$

Calibration vs. Estimation

- Crucial Question: How do we determine the market price of risk?
- Calibration and estimation are two ways of determining parameters in a financial model. The difference is:
- estimation uses methods of statistics/econometrics to infer parameter values from observed historical behavior of asset prices and other relevant quantities
- calibration sets parameter values so as to generate a close match between derivative prices obtained from the model and prices observed currently in the market.
- Estimation comes with standard errors, significance tests, and so on; analogous quantities that may serve as warning signals are not produced by calibration.
- Estimation works with models that are written under \mathbb{P} (real-world measure); calibration can be applied to models that are written under \mathbb{Q}_{N} (martingale measure corresponding to a chosen numéraire).

In our Situation

- Estimation helps us to figure out the parameters under \mathbb{P}

$$
\begin{aligned}
\mathrm{d} M_{t} & =M_{t} r \mathrm{~d} t \\
\mathrm{~d} S_{t} & =S_{t}\left[\mu \mathrm{~d} t+\sqrt{\nu_{t}} \mathrm{~d} W_{1, t}\right] \\
\mathrm{d} \nu_{t} & =\kappa\left(\theta-\nu_{t}\right) \mathrm{d} t+\sigma \sqrt{\nu_{t}} \mathrm{~d}\left(\rho W_{1, t}+\sqrt{1-\rho^{2}} W_{2, t}\right)
\end{aligned}
$$

- However, for pricing purposes, we need the \mathbb{Q}-dynamics.
- Idea: Calibrate the relevant parameters under \mathbb{Q} (in particular λ) such that the model closely matches the prices of plain vanilla options.
- Use the calibrated parameters to determine arbitrage-free prices of more complicated products.

Recipe for Calibration

- Determine a closed-form solution for option prices that depends on the particular choice of the market price of risk, i.e., an expression

$$
C\left(S_{0}, \nu_{0}, \Theta, K, T\right)
$$

for a strike price K, time horizon T, and parameter set $\Theta=(\kappa, \theta, \sigma, \rho, \lambda)$.

- Observe market prices of options $C_{1}\left(K_{1}, T_{1}\right), \ldots C_{N}\left(K_{N}, T_{N}\right)$ for various combinations of K and T.
- Solve the following minimization problem for a set of weights w :

$$
\Theta^{*}=\arg \min _{\Theta} \sum_{i=1}^{N} w_{i}\left[C\left(S_{0}, \Theta, K_{i}, T_{i}\right)-C_{i}\left(K_{i}, T_{i}\right)\right]^{2}
$$

- This shows a potential conflict between estimation and calibration: time series information can be used to determine the parameters κ and σ in the model under \mathbb{Q}, and these values might differ from those obtained by calibration.

Table of Contents

(8) Black Scholes Revisited

- The Fastest Way to the Black-Scholes Formula
- Example: Double-barrier Option: Pricing by the BSPDE
(9) Option Pricing in Incomplete Markets
- The Heston Model
- Parameter Choice: Calibration vs. Estimation
(10) Models with Dividends
- The Black-Scholes Setting
- General Setting
not relewnat

examinn Wiun,

Costs and Dividends

- In the theory we assume that assets are self-financing, but, in reality, stocks often generate dividends, and commodities typically bring storage costs.
- Strategy: specify where the dividends go (or where the costs are financed from). In this way, the given asset becomes part of a self-financing portfolio. Then derive the distribution of the asset under a suitable EMM.
- To illustrate, suppose that S_{t} is the price at time t of a dividend-paying stock, and assume for convenience that dividend is paid continuously at a fixed rate, as a percentage of the stock price. We show two implementations of the strategy above.

Motivation from Discrete Time

- Usual BS model:

$$
\begin{aligned}
\mathrm{d} S_{t} & =\mu S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t} \\
\mathrm{~d} M_{t} & =r M_{t} \mathrm{~d} t
\end{aligned}
$$

but now suppose that the stock pays continuously a fixed-percentage dividend, i.e., the dividend received from one unit of the stock during the instantaneous interval from t to $t+\mathrm{d} t$ is $q S_{t} \mathrm{~d} t$ where q is a constant.

- We can choose to re-invest the dividends into the stock. Let V_{t} be the value at time t of the portfolio that is created in this way. We have for small Δt :

$$
V_{t+\Delta t}=V_{t}+\frac{V_{t}}{S_{t}}\left(S_{t+\Delta t}-S_{t}\right)+\frac{V_{t}}{S_{t}} q S_{t} \Delta t
$$

Dividends in Continuous Time

- In continuous time:

$$
\mathrm{d} V_{t}=\frac{V_{t}}{S_{t}}\left(\mathrm{~d} S_{t}+q S_{t} \mathrm{~d} t\right)=(\mu+q) V_{t} \mathrm{~d} t+\sigma V_{t} \mathrm{~d} W_{t}
$$

- The portfolio V_{t} is self-financing, so under \mathbb{Q} :

$$
\mathrm{d} V_{t}=r V_{t} \mathrm{~d} t+\sigma V_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}
$$

- From $\mathrm{d} V_{t}=\left(V_{t} / S_{t}\right)\left(\mathrm{d} S_{t}+q S_{t} \mathrm{~d} t\right)$ it follows that $\mathrm{d} S_{t}=\left(S_{t} / V_{t}\right)\left(\mathrm{d} V_{t}-q V_{t} \mathrm{~d} t\right)$.
- Therefore

$$
\mathrm{d} S_{t}=(r-q) S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}
$$

This allows us to price options that are stated in terms of S_{t}.

Alternative Approach

- Alternative approach: assume that the dividends are placed in an savings account A.
- We have for small time interval of length Δt :

$$
A_{t+\Delta t}=A_{t}+r A_{t} \Delta t+q S_{t} \Delta t
$$

so that $\mathrm{d} A_{t}=\left(r A_{t}+q S_{t}\right) \mathrm{d} t$.

- The portfolio $V_{t}:=S_{t}+A_{t}$ is self-financing. So, under \mathbb{Q},

$$
\mathrm{d} V_{t}=r V_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}
$$

- From $\mathrm{d} V_{t}=\mathrm{d} S_{t}+\mathrm{d} A_{t}$ it follows that $\mathrm{d} S_{t}=\mathrm{d} V_{t}-\mathrm{d} A_{t}$.

Alternative Approach (cont'd)

- Therefore,

$$
\begin{aligned}
\mathrm{d} S_{t} & =r V_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}-\left(r A_{t}+q S_{t}\right) \mathrm{d} t \\
& =r\left(S_{t}+A_{t}\right) \mathrm{d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}-\left(r A_{t}+q S_{t}\right) \mathrm{d} t \\
& =(r-q) S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}
\end{aligned}
$$

We find the same SDE for S_{t} under \mathbb{Q} as was found on the basis of the reinvestment strategy.

- The pricing formula for a call option written on S_{t} becomes

$$
\begin{aligned}
C_{0} & =e^{-q T} S_{0}\left(d_{1}\right)-e^{-r T} K\left(d_{2}\right) \\
d_{1} & =\frac{\log \left(S_{0} / K\right)+\left(r-q+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}, \quad d_{2}=d_{1}-\sigma \sqrt{T} .
\end{aligned}
$$

General Setting

- Consider an extension of the generic state space model

$$
\begin{aligned}
\mathrm{d} X_{t} & =\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
Y_{t} & =\pi_{Y}\left(t, X_{t}\right)
\end{aligned}
$$

by introducing an m-dimensional dividend process $D_{t}=D\left(t, X_{t}\right)$ representing the cumulative dividends of the m assets.

- $\mathrm{d} D_{t}$ represents the dividends at time t.
- The gains process is defined as

$$
G_{t}=Y_{t}+D_{t}
$$

- A process ϕ is called a self-financing trading strategy if

$$
\begin{aligned}
V_{t}=\phi_{t}^{\prime} Y_{t}, \quad \mathrm{~d} V_{t} & =\phi_{t}^{\prime} \mathrm{d} G_{t} \\
& =\phi_{t}^{\prime} \mathrm{d} Y_{t}+\phi_{t}^{\prime} \mathrm{d} D_{t}
\end{aligned}
$$

Discounted Gain Process

- Given a pricing kernel K, we define the deflated price process by $Y^{K}=K Y$.
- What is an appropriate definition for the deflated gains process? \Longrightarrow With dividends, it does not make sense to define the deflated gains process by $G^{K}=K Y+K D$, since it does not take the timing and reinvestment of the dividends into account.
- Instead, we define the deflated gains process G^{K} s.t. deflated wealth $V^{K}=K V^{\phi}$ generated by self-financing trading strategy ϕ equals wealth generated by this trading strategy and deflated prices and gains:

$$
V^{K}=\phi^{\prime}(K Y), \quad \mathrm{d} V^{K}=\phi^{\prime} \mathrm{d} G^{K}, \quad G^{K} \text { is a } \mathbb{P} \text {-martingale }
$$

- We already know $Y^{K}=K Y$. What's about D^{K} ?

Dividend Dynamics

- Easiest Formulation (dividends are locally risk-free):

$$
\mathrm{d} D_{t}=\mu_{D}\left(t, X_{t}\right) \mathrm{d} t
$$

Then, the discounted dividends follow (check!):

$$
\mathrm{d} D_{t}^{K}=K_{t} \mu_{D}\left(t, X_{t}\right) \mathrm{d} t
$$

- General Case (dividends my be driven by systematic or idiosyncratic shocks):

$$
\mathrm{d} D_{t}=\mu_{D}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{D}\left(t, X_{t}\right) \mathrm{d} W_{t}
$$

Then, the discounted dividends follow (check!):

$$
\mathrm{d} D_{t}^{K}=\left[K_{t} \mu_{D}\left(t, X_{t}\right)+\sigma_{K}^{\prime} \sigma_{D}\right] \mathrm{d} t+K_{t} \sigma_{D}^{\prime} \mathrm{d} W_{t}
$$

First FTAP with Dividends

- Given: joint process of asset prices $\left(Y_{t}\right)_{t \geq 0}$, cumulative dividends $\left(D_{t}\right)_{t \geq 0}$
- The deflated gains process G^{K} is given by

$$
\mathrm{d} G^{K}=\mathrm{d}(K Y)+\mathrm{d} D_{t}^{K}
$$

First Fundamental Theorem of Asset Pricing

The following are equivalent:
(1) The market is free of arbitrage.
(2) There is a positive adapted scalar process $\left(K_{t}\right)_{t \geq 0}$ such that the process $\left(G_{t}^{K}\right)_{t \geq 0}$ is a martingale under \mathbb{P}.

Pricing with Dividends

- By definition $K_{0}=1$, and $D_{0}=0$.
- FTAP with dividends implies:

$$
G_{t}^{K}=\mathbb{E}_{t}\left[G_{T}^{K}\right] \quad \Longleftrightarrow \quad Y_{t}=Y_{t}^{K}+D_{t}^{K}=\mathbb{E}_{t}\left[Y_{T} K_{T}+D_{T}^{K}\right]
$$

in particular, $Y_{0}=\mathbb{E}\left[Y_{T} K_{T}+D_{T}^{K}\right]$

- Remark: The FTAP works for other numéraire-measure-combinations as well. In particular, for $N_{t}=M_{t}$:

$$
Y_{t}=\mathbb{E}_{t}^{\mathbb{Q}}\left[\frac{Y_{T}}{M_{T}}+\int_{t}^{T} \frac{1}{M_{u}} \mathrm{~d} D_{u}\right]
$$

- If dividends follow the dynamics $\mathrm{d} D_{t}=\mu_{D}\left(t, X_{t}\right) \mathrm{d} t$, then

$$
Y_{t}=\mathbb{E}_{t}^{\mathbb{Q}}\left[Y_{T} \mathrm{e}^{-\int_{t}^{T} r_{s} d s}+\int_{t}^{T} \mathrm{e}^{-\int_{t}^{u} r_{s} d s} \mu_{D}\left(u, X_{u}\right) \mathrm{d} u\right]
$$

i.e., prices have a Feynman-Kac representation.

