Part II

Generic State Space Model

Table of Contents

- Framework
- 4 No Arbitrage and the First FTAP
- 5 The Numéraire-dependent Pricing Formula
- 6 Replication and the Second FTAP
- The PDE Approach

Generic State Space Model

- We consider a general framework with *n* state variables and *m* assets
- The state variables may include asset prices (in this case $X_i = Y_i$) such as
 - Bonds
 - Commodities
 - Money market account
 - Stocks
 - ...
- But they can also model non-tradable financial or economic factors, such as
 - Interest rates
 - Volatility
 - Expected rate of return
 - Inflation
 - GDP growth
 - ...
- The model is driven by k risk sources (Brownian motions).

Generic State Space Model

 General continuous-time financial market model driven by Brownian motion:

Generic State Space Model

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t$$

$$Y_t = \pi_Y(t, X_t).$$

Notation:

 W_t : k-dimensional standard Brownian motion

 X_t : n-dimensional Markov process of state variables

 Y_t : m-dimensional process of asset prices at time t

 $\mu_X(t,X_t)$: vector of length n

 $\sigma_X(t, X_t)$: matrix of size $n \times k$

 $\pi_Y(t, X_t)$: vector of length m

t: time, measured in years

Asset Dynamics

- Given the functions μ_X , σ_X , and π_Y , we can determine the asset dynamics dY on the basis of Itô's lemma.
- Fix a component $C = Y_i$ ("claim") for some i = 1, ..., m from the vector of asset prices $Y = (Y_1, ..., Y_m)'$.
- Define the real function $\pi_C = \pi_{Y,j}$. Itô's lemma yields (see slide 31).

$$dC_t = \mu_C(t, X_t) dt + \sigma_C(t, X_t) dW_t$$

with

$$\mu_{C} = \frac{\partial \pi_{C}}{\partial t} + \nabla \pi_{C} \cdot \mu_{X} + \frac{1}{2} \operatorname{tr} \left(H_{\pi_{C}} \sigma_{X} \sigma'_{X} \right)$$

$$= \frac{\partial \pi_{C}}{\partial t} + \sum_{i=1}^{n} \frac{\partial \pi_{C}}{\partial x_{i}} \mu_{X,i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{\ell=1}^{k} \frac{\partial^{2} \pi_{C}}{\partial x_{i} \partial x_{j}} \sigma_{X,i,\ell} \sigma_{X,j,\ell}$$

$$\sigma_{C} = \nabla \pi_{C} \sigma_{X}.$$

Example: Black-Scholes Model

• Two assets: money market account M and stock S

$$dS_t = S_t[\mu dt + \sigma dW_t]$$

 $dM_t = M_t r dt$

- This can be written in standard state space form by letting the state variable = asset prices be of dimension n = m = 2, with components S_t and M_t .
- There is only one source of uncertainty (k = 1).
- The vector functions μ_X , σ_X , and π_Y are given by

$$\mu_X(t, S_t, M_t) = \begin{bmatrix} \mu S_t \\ r M_t \end{bmatrix}, \quad \sigma_X(t, S_t, M_t) = \begin{bmatrix} \sigma S_t \\ 0 \end{bmatrix},$$

$$\pi_Y(t, S_t, M_t) = \begin{bmatrix} S_t \\ M_t \end{bmatrix}.$$

Stochastic Interest Rates: Vasicek Model / CIR N

 A Vasicek process or Ornstein-Uhlenbeck process is a process of the form

$$dX_t = a(b - X_t) dt + \sigma dW_t.$$

- Properties: X_t fluctuates around the mean-reversion level b. The parameter a determines the mean-reversion speed. We will see later on that this process is normally distributed.
- Vasicek processes are commonly used to model rates such as interest rates, inflation rates, exchange rates, (expected) growth rates, etc.
- The Vasicek process has the (dis-)advantage that it can take positive and negative values.
- A prominent alternative is the Cox-Ingersoll-Ross process

$$dX_t = a(b - X_t) dt + \sigma \sqrt{X_t} dW_t,$$

which can only take positive values, but has a very complicated distribution (non-central χ^2).

Stochastic Interest Rates: Vasicek / CIR Model

Vasiceh: $dX_t = a(b - X_t) dI + \sigma dU_t$

Cox-lyerol-Ross: dxt = a lb-Xt/d+ VTXt dW

Model with Stochastic Interest Rates

• The short rate follows a Vasicek process:

$$\mathrm{d}S_t = \mu S_t \, \mathrm{d}t + \sigma_S S_t \, \mathrm{d}W_{1,t}$$
 \rightarrow GBT as in the BS-Model $\mathrm{d}M_t = r_t M_t \, \mathrm{d}t$ \rightarrow should be in the $\mathrm{d}S_t + \mathrm{d}S_t + \mathrm{d}S_t$

• n = 3 state variables, S_t , M_t , r_t , along with k = 2 sources of risk, and m = 2 assets S_t , M_t . Vector/matrix functions:

$$\mu_X(t, S_t, M_t, r_t) = \begin{bmatrix} \mu S_t \\ r_t M_t \\ a(b - r_t) \end{bmatrix},$$

$$\sigma_X(t, S_t, M_t, r_t) = \begin{bmatrix} \sigma_S S_t & 0 \\ 0 & 0 \\ \sigma_r \rho & \sigma_r \sqrt{1 - \rho^2} \end{bmatrix}, \quad \pi_Y(t, S_t, M_t, r_t) = \begin{bmatrix} S_t \\ M_t \end{bmatrix}.$$

Positive Prices

• If the asset i has a positive price, i.e., π_C maps to the positive real numbers, we can rewrite

$$dC_t = \mu_C(t, X_t) dt + \sigma_C(t, X_t) dW_t$$

= $C_t [\widetilde{\mu}_C(t, X_t) dt + \widetilde{\sigma}_C(t, X_t) dW_t]$

with $\widetilde{\mu}_C = \frac{\mu_C}{C}$, $\widetilde{\sigma}_C = \frac{\sigma_C}{C}$.

Applying Itô's lemma to determine log return:

$$d \log(C) = C^{-1} dC + \frac{1}{2} (-C^{-2}) d[C]$$
$$= \widetilde{\mu}_C dt + \widetilde{\sigma}_C dW_t - \frac{1}{2} \widetilde{\sigma}_C \widetilde{\sigma}'_C dt$$

Consequently,

$$\log(C_t) = \log(C_0) + \int_0^t (\widetilde{\mu}_C - \frac{1}{2}\widetilde{\sigma}_C \widetilde{\sigma}_C') ds + \int_0^t \widetilde{\sigma}_C dW_s$$

$$\implies C_t = C_0 \exp\left(\int_0^t (\widetilde{\mu}_C - \frac{1}{2}\widetilde{\sigma}_C \widetilde{\sigma}_C') ds + \int_0^t \widetilde{\sigma}_C dW_s\right) > 0$$

120-term

Self-financing Portfolios

$$\phi_{+-1}' Y_{t} = \phi_{+}' Y_{t} = V_{T} \phi = V_{D} + \sum_{i=0}^{N-1} \phi_{+i} \Delta Y_{t_{i+1}}$$

- ullet ϕ_t is the vector of number of units of assets held at time t.
- Portfolio value generated by the *portfolio strategy* ϕ :

$$V_t = \phi_t' Y_t.$$

ullet A portfolio strategy ϕ is *self-financing* if portfolio rebalancing neither generates nor destroys money, i.e.,

$$\int \mathsf{d} V_t = \phi_t' \, \mathsf{d} Y_t$$

or equivalently, $V_T = V_0 + \int_0^T \phi_t' \, \mathrm{d} Y_t$. This is the self-financing condition for continuous trading.

Table of Contents

- Framework
- 4 No Arbitrage and the First FTAP
- 5 The Numéraire-dependent Pricing Formula
- 6 Replication and the Second FTAP
- The PDE Approach

Checking if a Market is Free of Arbitrage

We consider our generic state space market model

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t$$

$$Y_t = \pi_Y(t, X_t).$$

- A natural question is whether there is an easy-to-check criterion on whether a market satisfies "nice" economic properties.
- Two fundamental economic properties are
 - absence of arbitrage ("no free profits without risk")
 - completeness ("all risks are hedgeble")
- Since the model is formulated in terms of the functions $\mu_X(t, X_t)$, $\sigma_X(t, X_t)$, and $\pi_Y(t, X_t)$, it should be possible to relate these conditions to these functions.

Arbitrage Opportunity

Definition (Arbitrage Opportunity)

1 A self-financing trading strategy ϕ is said to be an arbitrage opportunity if the value V generated by ϕ satisfies the following conditions:

Arb 1.)
$$V_0 = 0$$
 Zero net investment

Arb 2.)
$$\mathbb{P}(V_T \ge 0) = 1$$
 Riskless investment

Arb 3.)
$$\mathbb{P}(V_T > 0) > 0$$
 Chance of making profits

A market model is called free of arbitrage if no arbitrage opportunities exist.

"An arbitrage opportunity makes something out of nothing."

Working with a Numéraire

- Asset prices are expressed in terms of a chosen currency (euro, dollar, ...). For theoretical purposes it is often useful to work with a numéraire, and to consider relative asset price processes (i.e., relative to the numéraire).
- A numéraire N_t is any asset (or more generally a self-financing portfolio) whose price is always strictly positive, i.e., it has a representation

$$dN_t = \mu_N(t, X_t)dt + \sigma_N(t, X_t)dW_t$$

$$\Rightarrow = N_t [\widetilde{\mu}_N(t, X_t)dt + \widetilde{\sigma}_N(t, X_t)dW_t]$$

• A portfolio strategy ϕ_t is self-financing if and only if $d(V_t/N_t) = \phi_t' d(Y_t/N_t)$. The relative value process is then given by

$$\frac{V_t}{N_t} = \frac{V_0}{N_0} + \int_0^t \phi_s' \, \mathrm{d}\Big(\frac{Y_s}{N_s}\Big).$$

First Fundamental Theorem of Asset Pricing

• Given: joint process of asset prices $(Y_t)_{t\geq 0}$, and a numéraire $(N_t)_{t\geq 0}$.

First Fundamental Theorem of Asset Pricing

The following are equivalent:

- 1 The market is free of arbitrage.
- ② There is a probability measure $\mathbb{Q}_N \sim \mathbb{P}$ such that $(Y_t/N_t)_{t\geq 0}$ is a martingale under \mathbb{Q}_N .
 - The measure \mathbb{Q}_N is called an *equivalent martingale measure* (EMM) that corresponds to the numéraire N.
- The direction $(2) \Longrightarrow (1)$ can be proven easily. However, it is a hard task to prove $(1) \Longrightarrow (2)$, because one has to construct an EMM (see Delbean and Schachermayer 2006, *The Mathematics of Arbitrage*).

Proof of the Easy Part

$$V_0 = 0$$
, $\mathbb{P}(V_T^{\varphi} \ge 0) = 1$, $\mathbb{P}(V_T^{\varphi} \ge 0) \ge 0$

$$\frac{Y}{N}$$
 is a \mathbb{Q}_N - whyth $\Rightarrow \frac{Y^Q}{N}$ is a \mathbb{Q}_N - well \mathbb{Q}_N

$$\begin{array}{cccc} \mathbb{P}(V_{\tau}^{q} \geqslant 0) = 1 & \Leftrightarrow & \mathbb{Q}_{N}(V_{\tau}^{q} \geqslant 0) = 1 \\ & \Rightarrow & \mathbb{Q}_{N}(V_{\tau}^{q} \geqslant 0) = 1 & \Rightarrow & V_{\tau}^{q} \geqslant 0 \text{ a.s.} \end{array}$$

Proof of the Easy Part (cont'd)

but
$$\frac{V^{\varphi}}{N}$$
 is a multipul skelly at 0

$$\Rightarrow \mathbb{E}^{Q_N} \left[\frac{V_T^{\varphi}}{N_T} \right] = 0$$

$$= \sum_{N_T} \frac{V_T}{N_T} = 0 \quad \text{a.s.}$$

Criterion for Arbitrage-free Markets

Proposition (No Arbitrage Criterion)

The generic state space model

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t, \qquad Y_t = \pi_Y(t, X_t),$$

$$dY_t = \mu_Y(t, X_t) dt + \sigma_Y(t, X_t) dW_t$$

is free of arbitrage if and only if for all t and x there exists a scalar $r(t,x) \in \mathbb{R}$ and a vector $\lambda(t,x) \in \mathbb{R}^k$ such that

$$\mu_Y(t,x) - r(t,x)\pi_Y(t,x) = \sigma_Y(t,x)\lambda(t,x).$$

Another way to write the equation above:

$$\lim_{\gamma \to \infty} \sup_{k \to 1} \sup_{\gamma \to \infty} \frac{\left[\sigma_{Y} \times \pi_{Y}\right]}{\left[\sigma_{X} \times \pi_{X}\right]} \underbrace{\left[\sigma_{X} \times \pi_{Y}\right]}_{\in \mathbb{R}^{m}} \underbrace{$$

$$\bigcup_{r=0}^{\lambda} = \underbrace{\mu_{r}}_{\in \mathbb{R}^{m}}$$

Typical Situations

- A sufficient condition for absence of arbitrage is that the matrix $[\sigma_Y(t,x) \quad \pi_Y(t,x)]$ is invertible for all t and x. Under this condition, the solution is moreover unique.
- The size of the matrix $[\sigma_Y(t,x) \quad \pi_Y(t,x)]$ is $m \times (k+1)$, where m is the number of assets and k is the number of Brownian motions in the model. So, for the matrix to be invertible, we need

$$m = k + 1$$

(the number of assets exceeds the number of risk factors by one).

• If m < k+1, typically absence of arbitrage holds, but the solution is not unique. If m > k+1, then special conditions must be satisfied to prevent arbitrage.

Money Market Account I

• Notice that on every arbitrage-free market, there exists a short-term interest rate $r_t = r(t, X_t)$ (short rate).

Interest rate $r_t = r(t, X_t)$ (short rate). CTMT is a mortyal $C_0 = M_0 E_0 C_1 C_1 C_2 C_2 C_1$ The natural numéraire (the one that is used if there is no specific

reason to choose another one) is the *money market account* which is *locally risk-free* and defined by

- The money market account evolves according to have a doll rule $M_t = M_0 \, \exp \left(\int_0^t r_s \, \mathrm{d}s \right) \quad \text{of} \quad r$
- ullet Oftentimes, M is already specified in the dynamics of Y.

Money Market Account II

- If the market is free of arbitrage, but M is not a component of Y, one can equip the market with a money market account by enlarging the price vector $\widetilde{\pi}_Y = [\pi_Y \ M]'$.
- The extended market is free of arbitrage and pins down the term r in the NA criterion. The following equation is trivially satisfied:

$$\begin{bmatrix} \sigma_{M} & \pi_{M} \end{bmatrix} \begin{bmatrix} \lambda \\ r \end{bmatrix} = \mu_{M}$$

- If the solution for r is unique (but not necessarily the solution for λ), one can indeed construct the money market account, i.e., construct a self-financing portfolio s.t. $\phi'Y = M$.
- Moral: Every arbitrage-free market can be equipped with an MMA such that the extended market is still free of arbitrage. Thus, the MMA can be used as a numéraire in any arbitrage-free market.

Market Price of Risk and Risk-neutral Measure

- The process $\lambda_t = \lambda(t, X_t)$ is called the *market price of risk*. $\lambda = \mathcal{N}_t$
- Given the market price of risk, we can apply Girsanov's theorem and define the Girsanov kernel $\frac{\partial \mathcal{L}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t} \frac{\partial \mathcal{L}}{\partial t}$

$$\Rightarrow \quad \theta_t = \mathcal{E}(\lambda)_t = \exp\left(-\int_0^t \lambda_s' \mathrm{d}W_s - \frac{1}{2}\int_0^t \|\lambda_s\|^2 \mathrm{d}s\right)$$

ullet Then the process $W^{\mathbb{Q}}$ with

is a k-dimensional Brownian motion under $\mathbb{Q} \sim \mathbb{P}$.

- **Remark:** This measure $\mathbb{Q} = \mathbb{Q}_M$ is an equivalent martingale measure corresponding to the money market account as numéraire (see slide 72), a so-called *risk-neutral probability measure*.
- **Remark:** Under $\mathbb Q$ every traded asset has a drift rate of $r_t = r(t, X_t)$

Proof of the NA Criterion

• The condition for absence of arbitrage in the generic state space model can be written briefly as: there must exist r = r(t, x) and $\lambda = \lambda(t, x)$ such that

$$\mu_{Y} - r\pi_{Y} = \sigma_{Y}\lambda.$$

- We will derive this from the First Fundamental Theorem of Asset Pricing. The following concepts will be used:
 - numéraire
 - money market account
 - equivalent martingale measure (EMM)

Proof of the NA Criterion

- Let \mathbb{Q}_N denote a probability measure defined by the RN process λ_N . \mathbb{Q}_N is an EMM if and only if the relative asset price process Y_t/N_t is a \mathbb{Q}_N -martingale, i.e., its drift rate under \mathbb{Q}_N is zero.
- The relative asset price process follows

$$d(Y/N) = \mu_{Y/N} dt + \sigma_{Y/N} dW.$$

According to Girsanov's Theorem

$$d\widetilde{W}_t = \lambda_N(t, X_t) dt + dW_t$$

is a Brownian motion under \mathbb{Q}_N . Therefore,

$$d(Y/N) = \mu_{Y/N} dt + \sigma_{Y/N} (d\widetilde{W}_t - \lambda_N dt).$$

• Thus, Y/N is a \mathbb{Q}_N -martingale if and only if $\mu_{Y/N} = \sigma_{Y/N} \lambda_N$.

Proof of the NA Criterion (cont'd)

- Choose $N_t = M_t$ (money market account) and write $\lambda_M = \lambda$.
- From $dM_t = r_t M_t dt$ it follows that

$$d(M_t^{-1}) = -r_t M_t^{-1} dt.$$

• Therefore by the stochastic product rule,

$$d(Y/M) = Y d(M^{-1}) + M^{-1} dY = M^{-1} (dY - rY dt)$$

so that

$$\mu_{Y/M} = M^{-1}(\mu_Y - r\pi_Y), \qquad \sigma_{Y/M} = M^{-1}\sigma_Y.$$

• Because M^{-1} is never zero, the condition $\mu_{Y/M} = \sigma_{Y/M} \lambda$ is equivalent to the *no-arbitrage criterion*

$$\mu_{Y} - r\pi_{Y} = \sigma_{Y}\lambda.$$

Example: Black-Scholes Model

Asset dynamics

$$dS_t = \mu S_t dt + \sigma S_t dW_t, \qquad dM_t = rM_t dt.$$

• The no-arbitrage criterion $\mu_Y - r\pi_Y = \sigma_Y \lambda$ becomes

$$\begin{bmatrix} \mu S \\ rM \end{bmatrix} - r \begin{bmatrix} S \\ M \end{bmatrix} = \begin{bmatrix} \sigma S \\ 0 \end{bmatrix} \lambda$$

where the quantities that are to be determined are indicated in blue.

 There is a (unique) solution, i.e., the BS model is free of arbitrage (and complete):

$$r = r, \quad \lambda = \frac{\mu - r}{\sigma}$$

• The \mathbb{Q} -Brownian motion $W^{\mathbb{Q}}$ is given by $W_t^{\mathbb{Q}} = \lambda t + W_t$. Hence, the dynamics under \mathbb{Q} are

$$dS_t = rS_t dt + \sigma S_t dW_t^{\mathbb{Q}}, \qquad dM_t = rM_t dt.$$

Example: Model with Stochastic Interest Rates

• The short rate follows the Vasicek model:

$$\begin{bmatrix} \mu S \\ rM \end{bmatrix} - r \begin{bmatrix} S \\ M \end{bmatrix} = \begin{bmatrix} \sigma_S S & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \qquad \begin{array}{c} \lambda_1 \text{ and } r \\ \text{can be calculated} \\ \text{can by } BS-pb \text{ } \mathcal{U} \end{array}$$

- There is a (non-unique) solution. The model is free of arbitrage.
- The solution is non-unique because λ_2 is arbitrary. The quantities r and λ_1 are defined uniquely by absence of arbitrage.

Lo Q is not uniquely debrached => prices are not unique

Problem: Working with a Numéraire

- (a) For a given numéraire N, derive the dynamics of Y/N.
- (b) Show how the result from (a) simplifies if one chooses N=M.

Solution:

$$Sl.89 YdN^{-1} + N^{-1}dY + d\Gamma Y, N^{-1}$$

$$dN = N(\widetilde{m}_{N}d4 + \widetilde{J}_{N}dW) \qquad f(x) = \frac{1}{x}$$

$$dN^{-1} = -\frac{1}{N^{2}}dN + 2\frac{1}{x^{3}} \cdot \frac{1}{x}d\Gamma N \qquad f'(x) = -\frac{1}{x^{2}}$$

$$f''(x) = 2\frac{1}{x^{3}}$$

$$f''(x) = 2\frac{1}{x^{3}}$$

 $J\left(\frac{Y}{N}\right) = J\left(Y \cdot N^{-1}\right)$

Problem: Working with a Numéraire

$$\frac{d(\tilde{N})}{N} = -\frac{Y}{N} \left(\left[\tilde{\mu}_{N} - \tilde{\sigma}_{N} \tilde{\nabla}_{N} \right] dt + \tilde{\nabla}_{N} dW \right) \\
+ \frac{1}{N} \left[\mu_{Y} dt + \nabla_{Y} dW \right] - \frac{1}{N} \tilde{\nabla}_{N} \tilde{\nabla}_{Y} dt \\
\frac{1}{N} Y_{i} > 0 \quad \forall i = 1, ..., m \\
\frac{dY}{N} = -\frac{Y}{N} \left(\left[\tilde{\mu}_{N} - \tilde{\nabla}_{N} \tilde{\nabla}_{N} \right] dt + \tilde{\nabla}_{N} dW - \left[\tilde{\mu}_{Y} + \tilde{\sigma}_{N} \tilde{\nabla}_{Y} \right] dt \\
- \tilde{\nabla}_{Y} dW \right)$$

Table of Contents

- Framework
- 4 No Arbitrage and the First FTAP
- 5 The Numéraire-dependent Pricing Formula
- 6 Replication and the Second FTAP
- The PDE Approach

The Pricing Problem

$$C_T = (S_T - K)^+$$

Let an arbitrage-free model be given in the generic state space form

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t,$$

$$dY_t = \mu_Y(t, X_t) dt + \sigma_Y(t, X_t) dW_t, \qquad Y_t = \pi_Y(t, X_t)$$

s.t.

$$\mu_Y(t,X_t) - r(t,X_t)\pi_Y(t,X_t) = \sigma_Y(t,X_t)\lambda(t,X_t).$$

- Suppose now that a new asset is introduced, for instance a contract that will produce a state-dependent payoff at a given time T>0. Pricing on the basis of absence of arbitrage means: the new asset should be priced such that no arbitrage is introduced.
- We want to turn this principle into a pricing formula.

Pricing Formula

• If there is an EMM \mathbb{Q}_N , for a given numéraire N_t , the relative price of any asset must be a martingale under \mathbb{Q}_N . By the martingale property, we therefore have:

Numéraire-dependent pricing formula

Let C_T denote the terminal payoff of a contingent claim that matures at time T. For every EMM \mathbb{Q}_N for a given numéraire N_t , an arbitrage-free price at time t is given by

$$\frac{C_t}{N_t} \text{ model and } \mathbb{Q}_N \qquad C_t = N_t E_t^{\mathbb{Q}_N} \left[\frac{C_T}{N_T} \right].$$

- This can be used as a pricing formula for derivative contracts.
- **Crucial question**: When is the arbitrage-free price of the derivative unique?

Unique Asset Prices

• To have uniquely defined prices of derivatives, the equation

$$\mu_Y(t,x) - r(t,x)\pi_Y(t,x) = \sigma_Y(t,x)\lambda(t,x)$$

needs to have a *unique* solution $(r(t,x),\lambda(t,x))$. Then the corresponding EMM and the corresponding SDF are uniquely determined.

- One can show that the solution is unique if and only if the matrix $[\pi_Y \quad \sigma_Y]$ has full column rank for all (t, x).
 - Sufficient condition: the matrix $[\pi_Y \quad \sigma_Y]$ is invertible (requires m = k + 1).
 - Necessary condition: $m \ge k + 1$
- In arbitrage-free markets with unique EMM \mathbb{Q}_N , the arbitrage-free price $C_t = N_t E_t^{\mathbb{Q}_N} \left[\frac{C_T}{N_T} \right]$ is uniquely determined.
- We will see later on that uniqueness of the EMM corresponds to an important economic property: market completeness.

Verification of Absence of Arbitrage

• The process
$$C_t$$
 is defined by $Addy$ a derivative that sufficient $C_t = N_t E_t^{\mathbb{Q}_N} \Big[\frac{C_T}{N_T} \Big]$ does never lead to

- where C_T is a given random variable. When oppositions of the derivative, C_T , is a function of the state vector at time T: $C_T = F(X_T)$.
- To ensure that no arbitrage is introduced by the price process C_t , we need to verify that the process $(C_t/N_t)_{t>0}$ is a martingale; i.e., the martingale property holds for any s and t with s < t, not just for t and T.
- This follows from the tower law of conditional expectations:

$$E_s^{\mathbb{Q}_N}\left[\frac{C_t}{N_t}\right] = E_s^{\mathbb{Q}_N}\left[E_t^{\mathbb{Q}_N}\left[\frac{C_T}{N_T}\right]\right] = E_s^{\mathbb{Q}_N}\left[\frac{C_T}{N_T}\right] = \frac{C_s}{N_s}.$$

Money Market Account as a Numéraire

- In principle, every self-financing portfolio which generates positive wealth can act as a numéraire.
- However, there are several commonly used choices:
 - Money market account
 - Stock
 - Numéraire portfolio
 -

$$dB_t = r_t B_t dt$$

$$B_t = B_0 e^{\int_0^t r_s ds}$$

• Using the money market account as a numéraire, the pricing formula 13= M becomes

$$C_t = B_t E_t^{\mathbb{Q}} \left[\frac{C_T}{B_T} \right] = E_t^{\mathbb{Q}} \left[C_T \frac{B_t}{B_T} \right] = E_t^{\mathbb{Q}} \left[C_T e^{-\int_t^T r_s ds} \right]$$

- We refer to $\mathbb{Q} = \mathbb{Q}_M$ as the risk-neutral pricing measure. Under \mathbb{Q} , the agent discounts at the risk-free rate and does not require a risk premium.
- Under \mathbb{Q} every traded asset has an expected return of $r = r(t, X_t)$.

The Numéraire Portfolio

- Natural question: Is there a numéraire N for which $\mathbb{Q}_N = \mathbb{P}$?
- In an arbitrage free market driven by Brownian motion, one can show that the answer is positive if one can solve the problem of maximizing expected log-utility from terminal wealth, i.e., if

$$\max_{\phi} \mathbb{E}[\log(V_T^{\phi})] < \infty$$

- The portfolio ρ that maximizes this optimization problem will be called the *log-optimal portfolio* or the *numéraire portfolio*.
- One can show that using the numéraire portfolio as numéraire *N*, the pricing formula becomes the *real-world pricing formula*

$$C_t = \mathbb{E}_t \Big[C_T rac{V_t^{
ho}}{V_T^{
ho}} \Big]$$

where the expectation is calculated under \mathbb{P} .

Alternative Formulation of the FTAP

- Instead of exploiting an eqivalent martingale measure, it is also very common to make use of a stochastic discount factor (SDF) or pricing kernel.
- A stochastic discount factor K is a positive adapted process with $K_0 = 1$ such that the process $(K_t Y_t)$ is a martingale under \mathbb{P} , i.e.,

$$C_{\pm} = \mathbb{E}_{\pm} \left[C_{T} \frac{\mathcal{K}_{T}}{\mathcal{K}_{+}} \right] \qquad \mathbb{E}_{t} [K_{s} Y_{s}] = K_{t} Y_{t} \qquad \mathcal{K}_{\pm} = \frac{1}{V_{t}}$$

 One can show that the existence of an EMM is equivalent to the existence of a SDF. Therefore, the FTAP can also be formulated in terms of the SDF:

First Fundamental Theorem of Asset Pricing

The following are equivalent:

- 1 The market is free of arbitrage.
- There is a stochastic discount factor.

Some Properties of the SDF

• The SDF is a positive adapted process, i.e., it can be written as (see slide 46) $\frac{1}{2} \mathcal{U}_t = \mathcal{U}_t \left[\mathcal{U}_t \mathcal{U}_t + \mathcal{U}_t \mathcal{U}_t \mathcal{U}_t \right]$

$$K_{t} = \exp\left(\int_{0}^{t} (\widetilde{\mu}_{K} - \frac{1}{2}\widetilde{\sigma}_{K}\widetilde{\sigma}_{K}') ds + \int_{0}^{t} \widetilde{\sigma}_{K} dW_{s}\right)$$

• By definition of the SDF, the process $KM = (K_tM_t)_{t\geq 0}$ must be a martingale under \mathbb{P} . It follows from Itô's lemma that

$$d(KM)_t = K_t M_t [(r + \widetilde{\mu}_K) dt + \widetilde{\sigma}_K dW_t]$$

where
$$\widetilde{\sigma}_{\mathcal{K}} = -\lambda'$$
. The martingale property implies $\widetilde{\mu}_{\mathcal{K}} = -r$.

- The SDF combines the role of discounting at the short rate and the change of measure from \mathbb{P} to \mathbb{Q} .
- It follows that the numéraire portfolio and the pricing kernel are inversely related, i.e., $K_t = \frac{1}{V_t^\rho}$.

Multiple Payoffs

- A contract may generate payoffs (possible uncertain) at multiple points in time.
- Such a contract can be viewed as a portfolio of options with individual payoff dates. The value of the portfolio is the sum of the values of its constituent parts.
- We get, for a contract with payoffs \hat{C}_{T_i} at times T_i $(i=1,\ldots,n)$:

$$C_0 = N_0 \sum_{i=1}^n E^{\mathbb{Q}_N} \left[\frac{\hat{C}_{T_i}}{N_{T_i}} \right].$$

• In the special case of constant interest rates, we can take the money market account $M_t = e^{rt}$ as the numéraire; then

$$C_0 = \sum_{i=1}^n e^{-rT_i} E^{\mathbb{Q}}[\hat{C}_{T_i}].$$

• This shows that the NDPF can be seen as a generalized *net present* value formula.

Table of Contents

- Framework
- 4 No Arbitrage and the First FTAP
- 5 The Numéraire-dependent Pricing Formula
- 6 Replication and the Second FTAP
- The PDE Approach

Replication

- So far, we have talked about no-arbitrage and uniqueness of arbitrage-free prices. We now turn to the natural question of whether we can hedge risks and replicate payoffs.
- Let an arbitrage-free model be given in the generic state space form

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t,$$

$$dY_t = \mu_Y(t, X_t) dt + \sigma_Y(t, X_t) dW_t, \qquad Y_t = \pi_Y(t, X_t)$$

s.t.

$$\mu_Y(t,X_t)-r(t,X_t)\pi_Y(t,X_t)=\sigma_Y(t,X_t)\lambda(t,X_t).$$

• If we want to price a claim, a natural question is whether this derivative can be replicated by a self-financing trading strategy ϕ .

Replication and Complete Market

Definition (Replication Strategy, Completeness)

Let $C_T = F(X_T)$ be the terminal payoff of a contingent claim.

 $\textbf{ 4} \ \, \text{A self-financing portfolio strategy} \ \, \phi \ \, \text{is called a } \, \textit{replication strategy} \ \, \text{or} \\ \, \textit{hedging strategy} \ \, \text{for} \ \, \textit{C} \ \, \text{if}$

$$V_T^{\phi} = C_T$$

- ② The claim is said to be *attainable* if there exists a replication strategy ϕ for this claim.
- A market is said to be complete if and only if every claim is attainable.
- A replication strategy is thus a portfolio whose value is, under all circumstances, equal to the value of a specified contingent claim.
- Market completeness is a desirable property but typically not met in reality.

Pricing by Replication

Lemma (Law of One Price)

Suppose the market is arbitrage-free.

• For an attainable contingent claim C with hedging strategy ϕ ,

$$C_0 = V_0^{\phi}$$
 $C_{\mathcal{T}} = V_{\mathcal{T}}^{\phi}$

is the unique arbitrage-free price, i.e., trading in the primary assets and the derivative does not lead to arbitrage opportunities.

② If $V_T^{\phi} = V_T^{\psi}$ for trading strategies ϕ and ψ , then

$$V_0^{\phi}=V_0^{\psi}.$$

• The proof is trivial and does not rely on specific asset dynamics.

When is Replication Possible?

• We need an easy-to-check criterion when replication is possible.

Second Fundamental Theorem of Asset Pricing

For an arbitrage-free market, the following are equivalent:

- 1 The market is complete.
- ② For any given numéraire N, the corresponding EMM $\mathbb{Q}_N \sim \mathbb{P}$ is unique.
 - We have already seen that for an arbitrage-free market, the EMM is unique if and only if the matrix $[\pi_Y(t,x) \ \sigma_Y(t,x)] \in \mathbb{R}^{m \times (k+1)}$ has full column rank for all (t,x).
- Consequently, if there are enough traded assets (m > k + 1) is necessary) in the model to determine prices uniquely, then they are also enough to make replication possible. And vice versa.

Examples

 Obviously, the Black Scholes model (see slides 42, 63) is complete since

$$\begin{bmatrix} \downarrow & \downarrow \\ [\pi_Y \ \sigma_Y] = \begin{bmatrix} S_t & S_t \sigma \\ M_t & 0 \end{bmatrix}$$

is invertible for every combination of S_t and $M_t > 0$. Besides, there was a unique solution for r and λ , which uniquely determines the change of measure.

- ⇒ Pricing by replication is always possible.
- The model with stochastic interest rates of the Vasicek type (see slides 45, 64) is incomplete (m = k = 2), and the EMM is not unique since there is no unique solution for λ_2 .
 - ⇒ Pricing by replication is in general impossible.

However, the model can be completed by adding a bond that can be used to hedge interest rate risk (see Chapter 6).

The Replication Recipe

To replicate a payoff at time T given by $C_T = F(X_T)$, we follow a four-step procedure:

Step 1. Choose a numéraire N_t and determine the function

$$\pi_C(t,x) = \pi_N(t,x) E^{\mathbb{Q}_N} \left[\frac{F(X_T)}{\pi_N(T,X_T)} \, \middle| \, X_t = x \right].$$

- Step 2. Compute $\sigma_C(t,x) = \nabla \pi_C(t,x) \sigma_X(t,x)$.
- Step 3. Solve for $\phi = \phi(t, x)$ from

$$[\sigma_C \quad \pi_C] = \phi'[\sigma_Y \quad \pi_Y].$$

Step 4. Start with initial capital $\pi_C(0, X_0)$, and rebalance your portfolio along the trading strategy $\phi_t = \phi(t, X_t)$.

Validity of the replication recipe

- To show the validity of the replication recipe, three conditions need to be demonstrated:
 - (i) the equation $[\sigma_C \quad \pi_C] = \phi'[\sigma_Y \quad \pi_Y]$ (where ϕ is the unknown) can be solved
 - (ii) the portfolio value generated by the trading strategy ϕ at time T is equal to $V_T^{\phi} = F(X_T)$.
 - (iii) the trading strategy $\phi_t = \phi(t, X_t)$ is self-financing
- These items will be discussed on the next slides.

Property of the function π_C

• We already know that the process defined by $C_t = \pi_C(t, X_t)$ with

$$\pi_C(t,x) = \pi_N(t,x) \mathbb{E}_t^{\mathbb{Q}_N} \left[\frac{F(X_T)}{\pi_N(T,X_T)} \right]$$

is such that C_t/N_t is a martingale under \mathbb{Q}_N .

• This property is translated into state space terms as follows: let r = r(t,x) and $\lambda = \lambda(t,x)$ be defined as the solution of the equation (NA criterion):

$$\mu_{Y} - r\pi_{Y} = \sigma_{Y}\lambda.$$

Then we also have

$$\mu_{\mathcal{C}} - r\pi_{\mathcal{C}} = \sigma_{\mathcal{C}}\lambda.$$

Requirement (i)

 Market completeness means that the EMM for any given numéraire is uniquely defined, i.e., the equation

$$\underbrace{\mu_{Y}}_{\in \mathbb{R}^{m}} = \underbrace{\left[\sigma_{Y} \quad \pi_{Y}\right]}_{\in \mathbb{R}^{m \times (k+1)}} \underbrace{\left[\begin{matrix} \lambda \\ r \end{matrix}\right]}_{\in \mathbb{R}^{k+1}}$$

has a *unique* solution $[\lambda \ r]'$.

- In other words, the matrix $[\sigma_Y \ \pi_Y] = [\sigma_Y(t,x) \ \pi_Y(t,x)]$ has rank k+1 for all t and x (its columns are linearly independent).
- Because row rank = column rank, this implies that the *rows* of the matrix span the (k+1)-dimensional space. This means that the equation

$$[\sigma_C \ \pi_C] = \phi'[\sigma_Y \ \pi_Y].$$

has a unique solution ϕ . So requirement (i) is indeed satisfied.

Requirements (ii) and (iii)

- Define the portfolio strategy $\phi_t = \phi(t, X_t)$. The corresponding portfolio value is $V_t = \phi_t' Y_t$. Because $\phi' \pi_Y = \pi_C$, this implies that $V_t = C_t$ for all t. In particular, $V_T = F(X_T)$ (requirement (ii)).
- Because $\phi'\pi_Y = \pi_C$ and $\phi'\sigma_Y = \sigma_C$, and because $\mu_Y = r\pi_Y + \sigma_Y\lambda$ as well as $\mu_C = r\pi_C + \sigma_C\lambda$, we have

$$\phi'\mu_{Y} = \phi'(r\pi_{Y} + \sigma_{Y}\lambda) = r\phi'\pi_{Y} + \phi'\sigma_{Y}\lambda = r\pi_{C} + \sigma_{C}\lambda = \mu_{C}.$$

Therefore,

$$\mathrm{d}V = \mu_{C}\,\mathrm{d}t + \sigma_{C}\,\mathrm{d}W = \phi'(\mu_{Y}\,\mathrm{d}t + \sigma_{Y}\,\mathrm{d}W) = \phi'\mathrm{d}Y$$

which shows that the proposed portfolio strategy is self-financing (requirement (iii)).

Example: Call Option in BS Model

■ BS model under Q (check!):

$$dS_t = rS_t dt + \sigma S_t dW_t^{\mathbb{Q}}$$

$$dM_t = rM_t dt.$$

- Payoff at time $T: \max(S_T K, 0)$. $C_0 = |E| \frac{C_T}{e^{rT}}$
- Step 1: determine the pricing function:

$$\pi_{C}(t, S_{t}) = S_{t}\Phi(d_{1}) - e^{-r(T-t)}K\Phi(d_{2})$$

$$\overline{\Phi}(d_{1}) = \mathbb{Q}(S_{T} > \mathcal{U}) \quad \text{show is numeral a}$$

$$d_{1,2} = \frac{\log(S_{t}/K) + (r \pm \frac{1}{2}\sigma^{2})(T-t)}{\sigma\sqrt{T-t}}$$

Ilda) is the number of shorts in the replicate pulpho

Example: Call Option in BS Model (cont'd)

• Step 2: compute

$$\sigma_{C}(t, S_{t}) = \frac{\partial \pi_{C}}{\partial S_{t}}(t, S_{t}) \sigma S_{t} = \Phi(d_{1}) \sigma S_{t}.$$

We find

$$\phi_S(t, S_t) = \Phi(d_1)$$

$$\phi_M(t, S_t) = -K \Phi(d_2)$$

Delta Hedging

• The "delta" of an option is the derivative of the option price with respect to the value of the underlying Y_i , i.e.,

$$\Delta_C = \frac{\partial \pi_C}{\partial Y_i} = \overline{\Phi} \left(d_A \right)$$

- There could be several underlying assets (for instance in the case of an option written on the maximum of two stocks), and in that case there are also several deltas.
- In models driven by a single Brownian motion, if an option depends on a single underlying asset, then the number of units of the underlying asset that should be held in a replicating portfolio is given by the delta of the option (as in the example). The resulting strategy is called the *delta hedge*.
- Under certain conditions this also works in the case of multiple underlyings.

Table of Contents

- Framework
- 4 No Arbitrage and the First FTAP
- 5 The Numéraire-dependent Pricing Formula
- 6 Replication and the Second FTAP
- The PDE Approach

The Pricing PDE

Slade 41 • Compute μ_C and σ_C (Itô's lemma):

$$\rho_{C} = \frac{\partial \pi_{C}}{\partial t} + \nabla \pi_{C} \cdot \mu_{X} + \frac{1}{2} \text{tr} \left(H_{\pi_{C}} \sigma_{X} \sigma'_{X} \right)$$

$$\rho_{C} = \nabla \pi_{C} \sigma_{X}$$

• The equation $\mu_C - r\pi_C = \sigma_C \lambda$ becomes: $\nabla_C \lambda = \nabla \pi_C \nabla_{\lambda} \lambda$

Pricing PDE

$$\frac{\partial \pi_C}{\partial t} + \nabla \pi_C \cdot \underbrace{(\mu_X - \sigma_X \lambda)}_{=\mu_X^{\mathbb{Q}_N}} + \frac{1}{2} \operatorname{tr} \Big(H_{\pi_C} \, \sigma_X \sigma_X' \Big) = r \pi_C, \qquad \pi_C(T, x) = F(x)$$

- This is a partial differential equation for the pricing function $\pi_{\mathcal{C}}$.
- Notice that the boundary condition $\pi_C(T,x) = F(x)$ determines the type of the derivative.

Remarks

• In a model without any non-traded state variables, i.e., Y = X, $\pi_{Y} = x$, the NA condition becomes

$$\mu_X - \sigma_X \lambda = r x$$

The PDE collapses to

If all skill with the second of the spatial first-order derivatives is r, which is the

- drift term of traded assets under Q.
- The PDE may be solved analytically or numerically (finite-difference) methods – generalization of tree methods).
- The PDE can also be derived using the Feynman-Kac Theorem: a mathematical statement that connects the theory of partial differential equations to conditional expectations.

Excursion: The Feynman-Kac Theorem

Theorem (Feynman-Kac)

Consider the following parabolic partial differential equation

$$\frac{\partial \pi_{\mathcal{C}}}{\partial t} + \nabla \pi_{\mathcal{C}} \cdot \mu_{X}^{\mathbb{Q}}(t, x) + \frac{1}{2} \operatorname{tr} \Big(H_{\pi_{\mathcal{C}}} \sigma_{X}(t, x) \sigma_{X}(t, x)' \Big) + f(t, x) = r(t, x) \pi_{\mathcal{C}}$$

subject to the terminal condition $\pi_C(T,x) = F(x)$. Then, the solution can be written as a conditional expectation

$$\pi_C(t,x) = \mathbb{E}_{t,x}^{\mathbb{Q}} \left[\int_t^T e^{-\int_t^s r(\tau,X_\tau) d\tau} f(s,X_s) ds + e^{-\int_t^T r(\tau,X_\tau) d\tau} F(X_T) \right]$$

under $\mathbb Q$ such that X is an Itô process driven by the equation

$$\mathrm{d}X = \mu_X^\mathbb{Q}(t,X)\,\mathrm{d}t + \sigma_X(t,X)\,\mathrm{d}W^\mathbb{Q},$$

with $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q} .

Example: Black-Scholes PDE

$$dS_t = rS_t dt + \sigma S_t dW_t^{\mathbb{Q}}$$

$$dM_t = rM_t dt.$$

• Therefore, the BSPDE for a derivative with terminal payoff $F(S_T)$ reads

$$\frac{\partial \pi_C}{\partial t} + \frac{\partial \pi_C}{\partial S} Sr + \frac{1}{2} \frac{\partial^2 \pi_C}{\partial S^2} S^2 \sigma^2 = r \pi_C$$

s.t.
$$\pi_C(T, S_T) = F(S_T)$$

- In their original paper Black and Scholes (1973), derived this formula using a different approach and made two mistakes which cancel each other out. Merton (1973) corrected these mistakes and came up with the same PDE.
- The PDE can be transformed to the so-called *heat equation*, which is commonly used in physics and has a well-known solution.

Example: Pricing PDE with Stoch. Interest Rates

• Under \mathbb{Q} , the dynamics are

$$egin{aligned} \mathrm{d} M_t &= r_t M_t \, \mathrm{d} t \ \mathrm{d} S_t &= r_t S_t \, \mathrm{d} t + \sigma_S S_t \, \mathrm{d} W_{1,t}^\mathbb{Q} \ \mathrm{d} r_t &= a^\mathbb{Q} (b^\mathbb{Q} - r_t) \, \mathrm{d} t + \sigma_r \, \mathrm{d} ig(
ho W_{1,t}^\mathbb{Q} + \sqrt{1 -
ho^2} \, W_{2,t}^\mathbb{Q} ig). \end{aligned}$$

- Notice that the risk-neutral measure is not uniquely determined since the market price of risk $\lambda = (\lambda_1 \ \lambda_2)$ is not unique.
- Therefore, the pricing PDE for a derivative with payoff $F(r_T, S_T)$ reads

$$r \pi_{C} = \frac{\partial \pi_{C}}{\partial t} + \frac{\partial \pi_{C}}{\partial S} Sr + \frac{\partial \pi_{C}}{\partial r} a^{\mathbb{Q}} (b^{\mathbb{Q}} - r)$$

$$+ \frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} S^{2} \sigma_{S}^{2} + \frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial r^{2}} \sigma_{r}^{2} + \frac{\partial^{2} \pi_{C}}{\partial r \partial S} \rho \sigma_{r} \sigma_{S} S$$

s.t.
$$\pi_C(T, r_T, S_T) = F(r_T, S_T)$$

Summary

• Generic State Space Model:

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t, \qquad Y_t = \pi_Y(t, X_t)$$

No-arbitrage condition (from FTAP 1):

$$\exists (\neg, \lambda) \; ; \qquad \mu_Y - r\pi_Y = \sigma_Y \lambda$$

Numéraire-dependent pricing formula:

$$\frac{C_t}{N_t} = E_t^{\mathbb{Q}_N} \left[\frac{C_T}{N_T} \right] \qquad N = M : C_t = \mathbb{E}_t^{\mathbb{Q}} \left[e^{-r(\tau - t)} \right]$$

• Replication recipe (from FTAP 2) if $rk(\sigma_Y \pi_Y) = k + 1$:

$$[\sigma_C \quad \pi_C] = \phi'[\sigma_Y \quad \pi_Y]$$

• Pricing via PDE:

$$\frac{\partial \pi_{C}}{\partial t} + \nabla \pi_{C} \cdot (\mu_{X} - \sigma_{X} \lambda) + \frac{1}{2} \operatorname{tr} \left(H_{\pi_{C}} \sigma_{X} \sigma'_{X} \right) = r \pi_{C} \int_{\Gamma_{C}} (\tau, \lambda_{T}) d\tau$$

$$= \mathcal{T}(X_{T})$$