Valuation and Risk Management

Christoph Hambel

Tilburg University
Tilburg School of Economics and Management Department of Econometrics and Operations Research

Fall Term 2023

Course Information

WWW. chrotoph-hambel. de

- Lecturers:
- Christoph Hambel (financial modeling and derivative pricing)
- Nikolaus Schweizer (numerical methods and risk measures)
Henk Keffrrt(K.R.F.Keffut@tilbugumiversty.edu)
- This course ...
- ... provides an introduction to financial modeling, pricing, and risk management beyond the Black-Scholes framework
- ... requires some knowledge from mathematics and finance, especially from stochastic calculus (Wiener process, Itô's Lemma, Change of measure, Girsanov's Theorem, ...)
- ... contains a guest lecture by (tba)
- Grading:
- Exam 70\%
- Two Assignments (15% each)

What to expect?

- What can you expect from us? We will...
- ... timely provide the learning material on Canvas
- ... also upload the slides with hand-written complements (some slides are intentionally blank)
- ... illustrate the lecture by examples
- ... provide problem sets and a sample exam to practice the material
- ... be available for questions
- ... offer a virtual Q\&A session after the last lecture
- What will we expect from you? You should ...
- ... be well-prepared when you come to the lecture
- ... actively participate in the lecture
- ... take the opportunity and ask us questions during the classes

Recommended Literature

- We do not make any book the mandatory reading for this course. However, we highly recommend the following textbooks:
- Schumacher, J.M.: Introduction to Financial Derivatives: Modeling, Pricing and Hedging (Open Press TiU)
- Björk, T.: Arbitrage Theory in Continuous Time (Oxford)
- Glasserman, P.: Monte-Carlo Methods in Financial Engineering (Springer)
- This course follows the notation in Schumacher (2020), which contains a lot of exercises.

INTRODUCTION TO
FINANCIAL DERIVATIVES Modeling. Pricng and Hedging

Arbitrage Theory in Continuous
Time
fourch edition
Now including Fquililsiam Theory
OXIORD

Preliminary Schedule

Please notice that the plan can change!

- Mon, 28.08.2023, 12:45, WZ105
- Mon, 04.09.2023, 12:45, WZ105
- Tue, 05.09.2023, 14:45, CUBE 218
- Mon, 11.09.2023, 12:45, WZ105
- Mon, 18.09.2023, 12:45, WZ105
- Tue, 19.09.2023, 14:45, CUBE 218
- Mon, 25.09.2023, 12:45, WZ105
- Mon, 02.10.2023, 12:45, WZ105
- Tue, 03.10.2023, 14:45, CUBE 218
- Mon, 09.10.2023, 12:45, WZ105
- Tue, 10.10.2023, 14:45, CUBE 218

Structure of the Course (First Half)

(1) Introduction to Financial Modeling

- Discrete vs. Continuous Time Modeling
- Fundamentals from Stochastic Calculus
(2) Continuous time: Generic State Space Model
- Framework
- No Arbitrage and the First FTAP
- The Numéraire-dependent Pricing Formula
- Replication and the Second FTAP
- The PDE Approach
(3) Contingent Claim Pricing
- Black-Scholes Revisited
- Option Pricing in Incomplete Markets
- Models with Dividends

Structure of the Course (First Half)

(4) Fixed Income Modeling

- Bonds and Yields
- Interest Rates and Interest Rate Derivatives
- Short Rate Models for the TSIR
- Empirical Models
- The Heath-Jarrow-Morton Framework
- LIBOR Market Model and Option Pricing
(3) A Brief Introduction to Credit Risk
- Reduced-Form Modeling
- Merton's Firm Value Model

Part I

Introduction to Financial Modeling

Table of Contents

(1) Discrete vs. Continuous Time Modeling

(2) Fundamentals from Stochastic Calculus

Time

- Discrete time with time horizon T :

$$
\begin{aligned}
& |t| \in\{0, \Delta t, 2 \Delta t, \ldots,(n-1) \Delta t, \underbrace{n \Delta t}_{=T}\}=\{i \Delta t \mid i=0, \ldots, n\}
\end{aligned}
$$

- Continuous time as a limit of discrete time ($\Delta t \rightarrow 0$ as $n \rightarrow \infty$):

$$
[t] \in[0, T]
$$

Modeling in Discrete Time: First Idea

- Risk-free asset (bond) paying a constant interest rate:

$$
B_{t+\Delta t}=B_{t}(1+\boldsymbol{r} \cdot \Delta t) \quad \Longleftrightarrow \quad \frac{\Delta B_{t+\Delta t}}{B_{t}}=r \cdot \Delta t
$$

- Risky asset (stock):

$$
S_{t+\Delta t}=S_{t}\left(1+\mu \cdot \Delta t+\sigma \cdot \nu_{t+\Delta t} \cdot \sqrt{\Delta t}\right), \quad \mid \nu_{t+\Delta t} \sim_{i . i . d .}(0,1)
$$

- Return:

Problem: Returns are not necessarily bounded from below by -1 and thus asset prices can be negative.

Log Returns

- Way out? \rightarrow Model log returns, L_{t}, and take the exponential:

$$
S_{t+\Delta t}=S_{t} \mathrm{e}^{\Delta L_{t+\Delta t}}
$$

- Risk-free asset (bond):

$$
\begin{aligned}
& \quad B_{t+\Delta t}=B_{t} \mathrm{e}^{r \cdot \Delta t} \Longleftrightarrow r \Delta t=\ln \left(\frac{B_{t+\Delta t}}{B_{t}}\right)=\Delta \ln B_{t+\Delta t} \\
& \text { S Risky asset (stock): }
\end{aligned}
$$

$$
\Delta L_{t+\Delta t}=\ln \left(S_{t+\Delta t}\right)-\ln \left(S_{t}\right)=\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \cdot \nu_{t+\Delta t} \cdot \sqrt{\Delta t}
$$

- Now, we take the limit to continuous time, i.e., we increase the number of periods $(n \rightarrow \infty)$ while keeping the time horizon constant, i.e., $\Delta t=\frac{T}{n} \rightarrow 0$.

Log Returns

$$
\begin{aligned}
S_{T} & =S_{0} \prod_{i=0}^{n-1} \mathrm{e}^{\Delta L_{(i+1) \Delta t}} \\
& =S_{0} \exp \left\{\sum_{i=0}^{n-1}\left[\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t+\sigma \cdot \nu_{(i+1) \Delta t} \cdot \sqrt{\Delta t}\right]\right\} \\
n \cdot \Delta t & =\tau \\
& =S_{0} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \cdot \sqrt{\Delta t} \cdot \sum_{i=1}^{n} \nu_{i \Delta t}\right\} \\
& =S_{0} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \cdot \sqrt{T} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nu_{i \Delta t}\right\}
\end{aligned}
$$

According to the CLT: $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nu_{i \Delta t} \rightarrow_{d} Z_{T} \sim \mathcal{N}(0,1)$ as $n \rightarrow \infty$, i.e.,

$$
S_{T} \rightarrow_{d} S_{0} \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \cdot \sqrt{T} \cdot Z_{T}\right\}
$$

From Discrete to Continuous Time

- In the limit, the log return is normally distributed:

$$
L_{T}=L_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \cdot \sqrt{T} \cdot Z_{T}
$$

- Consequently, in the limit S_{T} is log-normally distributed with

$$
\begin{array}{lrl}
\text { mean: } & \mathbb{E}\left[S_{T}\right] & =S_{0} \mathrm{e}^{\mu \cdot T} \\
\text { variance: } & \operatorname{var}\left(S_{T}\right) & =S_{0}^{2} \mathrm{e}^{2 \mu \cdot T}\left[\mathrm{e}^{\sigma^{2} T}-1\right]
\end{array}
$$

- Does this mean that any discrete-time model converges to a log-normal distribution? No! But wee need non-iid shock sit. The CLT cannot be applied.
- How can we model asset prices in continuous time?
$\Delta S_{t+\Delta t}=S_{t}\left[\mu \Delta t+\sigma v_{t+\Delta t} \sqrt{\Delta t}\right]$
$L_{\text {reptant }} l^{2} d S_{t}=S_{t}\left[\mu d t+\sigma d \omega_{t}\right]$

Trading in Discrete Time

- Assume that there is a frictionless financial market (i.e., no taxes, no transaction costs, no short-selling constraints, ...)
- Throughout the lecture we will be using vector notation:
m : number of basic assets
Y_{t} : m-dimensional vector of asset prices at time t
ϕ_{t} : vector of number of units of assets held at time t
- Portfolio value generated by the portfolio strategy (or trading strategy) ϕ :

$$
V_{t}=\phi_{t}^{\prime} Y_{t}
$$

- A portfolio strategy ϕ is self-financing if trading neither generates nor destroys money, i.e.,

$$
\phi_{t-\Delta t}^{\prime} Y_{t}=\phi_{t}^{\prime} Y_{t} .
$$

Trading in Discrete Time

- Suppose that rebalancing takes place at times $0<t_{1}<\cdots<t_{n}=T$, i.e., $t_{j}=j \Delta t$.

$$
\begin{aligned}
V_{T} & =V_{0}+\sum_{j=0}^{n-1}\left(V_{t_{j+1}}-V_{t_{j}}\right) \quad \text { (telescope rule) } \\
& =V_{0}+\sum_{j=0}^{n-1} \phi_{t_{j}}^{\prime}\left(Y_{t_{j+1}}-Y_{t_{j}}\right) \quad \text { (self-financing portfolio) } \\
& =V_{0}+\underbrace{\sum_{j=0}^{n-1} \phi_{t_{j}}^{\prime} \Delta Y_{t_{j+1}}} \cdot \underset{\substack{\text { ato }}}{\longrightarrow} V_{0}+\int_{0}^{T} \phi_{t}^{\prime} d Y_{t}
\end{aligned}
$$

- The sum $\sum_{j=0}^{n-1} \phi_{t_{j}}^{\prime} \Delta Y_{t_{j+1}}$ converges in some sense to the stochastic integral $\int_{0}^{T} \phi_{t}^{\prime} \mathrm{d} Y_{t}$ even if the integrator is of infinite variation.
- The continuous-time version of self-financing is $V_{T}=V_{0}+\int_{0}^{T} \phi_{t}^{\prime} \mathrm{d} Y_{t}$.

From Discrete Time to Continuous Time

- We need adequate tools for modeling asset prices in continuous time that can be interpreted along the lines of

$$
\begin{aligned}
& \text { (1) } \frac{\Delta B_{t+\Delta t}}{B_{t}}=r \cdot \Delta t \\
& \text { (2) } \frac{\Delta S_{t+\Delta t}}{S_{t}}=\mu \cdot \Delta t+\sigma \cdot \nu_{t+\Delta t} \cdot \sqrt{\Delta t}
\end{aligned}
$$

and that preserve the limit distribution of the stock return.

- Replace (1) by an ODE and (2) by an SDE:

$$
\begin{aligned}
& \left(1^{\prime}\right) \frac{\mathrm{d} B_{t}}{B_{t}}=r \mathrm{~d} t \\
& \left(2^{\prime}\right) \frac{\mathrm{d} S_{t}}{S_{t}}=\mu \mathrm{d} t+\sigma \mathrm{d} W_{t}
\end{aligned}
$$

- Replace the self-financing condition $\phi_{t-\Delta t}^{\prime} Y_{t}=\phi_{t}^{\prime} Y_{t}$ by $V_{T}=V_{0}+\int_{0}^{T} \phi_{t}^{\prime} \mathrm{d} Y_{t}$ for an adequately defined stochastic integral.

Table of Contents

(1) Discrete vs. Continuous Time Modeling

(2) Fundamentals from Stochastic Calculus

Stochastic Processes

- Consider a filtered probability space $\left(\Omega, \mathcal{A},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$
- Ω denotes the state space.
- $\mathcal{A} \subset 2^{\Omega}$ denotes a sigma algebra that contains all events for which probabilities can be assigned.
- $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ denotes the filtration, which models the set of information available at time t.
- $\mathbb{P}: \mathcal{A} \rightarrow[0,1]$ is a probability measure, which we refer to as real-world probability measure.
- A stochastic process X is a collection of random variables $\left(X_{t}\right)_{t \geq 0}$ indexed by time.
- Remarks:
- Throughout the course, we assume that all processes are continuous (i.e., "no jumps" a.s.) and adapted (i.e., "realization X_{t} is known at time t "). Formulas become more involved if we relax this assumption.
- I will avoid technical terms (e.g., measurability, integrability), but focus on economic interpretations. I will rather assume that all processes satisfy all relevant conditions.

Brownian Motion

Definition (Brownian Motion)

A one-dimensional (standard) Brownian motion (aka Wiener Process) is a stochastic process $W=\left(W_{t}\right)_{t \geq 0}$ such that $W_{0}=0$ a.s. and

- $W_{t}-W_{s} \sim \mathcal{N}(0, t-s)$ for $0 \leq s<t$ (stationary increments).
- $W_{t}-W_{s}$ is independent of $W_{u}-W_{v}$ for $0 \leq v<u \leq s<t$ (independent increments).
- A k-dimensional standard Brownian motion $W=\left(W_{1}, \ldots, W_{k}\right)$ is a k-dimensional vector of independent Brownian motions.
- Notice that the paths of a Brownian motion are continuous (a.s.) but nowhere differentiable. In particular, the paths of Brownian motion have infinite length on any interval ("infinite variation").

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|w_{t_{i+n}-}-w_{+i}\right|=\infty
$$

Arckeyth of cary puts on an g interval is trainile

$$
\begin{aligned}
& {[0, T], n \Delta t=T} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\omega_{+_{j+1}}-\omega_{+i}\right)^{2}=T \\
& \operatorname{Var}\left(\omega_{T}\right)=T
\end{aligned}
$$

Martingales

Definition (Martingale)

A stochastic process $Z=\left(Z_{t}\right)_{t \geq 0}$ is said to be a martingale if "the best estimate of the future is the present", i.e.,

$$
E_{s}\left[Z_{t}\right]=Z_{s} \quad t \geq s
$$

- Martingales relate to "fair games" and are often thought of as "purely stochastic" processes, that is, containing no trend or being constant in expectation..
- Example: Brownian motion is a martingale.
- There are many generalizations of martingales, e.g.,
- Submartingales ("non-decreasing in expectation")
- Supermartingales ("non-increasing in expectation")
- Local martingales ("if stopped process is a martingale")
- Semimartingales ("local martingale + process of finite variation")

Itô Integral

- The stochastic integral (a.k.a. Itô integral) is defined by

$$
\int_{0}^{T} X_{t} \mathrm{~d} Z_{t}=\lim _{n \rightarrow \infty} \sum_{j=0}^{n} X_{t_{j}}\left(Z_{t_{j+1}}-Z_{t_{j}}\right)
$$

where Z is a semimartingale, X is an adapted process, and the stochastic limit is taken in the sense of refining partitions (i.e., intermediate points $t_{0}, t_{1}, \ldots, t_{n}$ become more and more dense on the interval $[0, T]$ as n tends to infinity).

- The construction of the limit and prove of convergence is not trivial, since in general the integrator is of infinite variation.
- Such a limit does not necessarily exist pathwise.
- Note: by contrast to the Riemann-Stieltjes integral, the integrand is evaluated at the left end t_{j}.
- The stochastic integral is itself a random variable.

Stochastic Differential Equation

Definition (Stochastic Differential Equation)

Let W be a standard Brownian motion. An expression of the form

$$
\mathrm{d} X_{t}=\mu\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} W_{t}
$$

for given functions $\mu\left(t, X_{t}\right)$ (drift) and $\sigma\left(t, X_{t}\right)$ (volatility) is called a stochastic differential equation (SDE) driven by Brownian motion and should be understood as a short-hand notation for the integral equation

$$
X_{t}=X_{0}+\int_{0}^{t} \mu\left(s, X_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(s, X_{s}\right) \mathrm{d} W_{s}
$$

- If the drift $\mu\left(t, X_{t}\right)$ is zero, then the solution is a martingale.
- This definition can be generalized to SDEs driven by jump processes (e.g., Poisson processes).

Quadratic (Co-)Variation

- Let X, Y be two real-valued stochastic processes, then their quadratic covariation process is defined as

$$
[X, Y]_{t}=\lim _{\Delta t \rightarrow 0} \sum_{j=0}^{t}\left(X_{t_{j+1}}-X_{j}\right)\left(Y_{t_{j+1}}-Y_{j}\right)
$$

- The quadratic variation process of X is defined by
$\left[a Y^{Y}, b x\right]$

$$
[X]_{t}=[X, X]_{t}
$$

- Rules for quadratic (co)-variation:
- linearity in both arguments
- $[X, g]=0$ if g is a continuous function of bounded variation
- $\mathrm{d}\left[W_{1}, W_{2}\right]=\rho \mathrm{d} t$ for BM with correlation coefficient $\rho ; \mathrm{d}[W]=\mathrm{d} t$
- if $\mathrm{d} X=\mu_{X} \mathrm{~d} t+\sigma_{X} \mathrm{~d} W_{1}$ and $\mathrm{d} Y=\mu_{Y} \mathrm{~d} t+\sigma_{Y} \mathrm{~d} W_{2}$, then

$$
\mathrm{d}[X, Y]=\sigma_{X} \sigma_{Y} \rho \mathrm{~d} t, \quad \mathrm{~d}[X]=\sigma_{X}^{2} \mathrm{~d} t
$$

Itô's Lemma: Univariate Versions

Theorem (Itô's Lemma for continuous semimartingales)

Let X be a continuous real-valued semimartingale, and $f: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{1,2}$-function, then

$$
\mathrm{d} f\left(t, X_{t}\right)=\frac{\partial}{\partial t} f\left(t, X_{t}\right) \mathrm{d} t+\frac{\partial}{\partial x} f\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(t, X_{t}\right) \mathrm{d}[X, X]_{t}
$$

Theorem (Itô's Lemma for Itô processes)

Let X be an Itô process $\mathrm{d} X_{t}=\mu_{X} \mathrm{~d} t+\sigma_{X} \mathrm{~d} W_{t}$, and $f: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{1,2}$-function, then

$$
\begin{aligned}
\mathrm{d} f\left(t, X_{t}\right)= & {\left[\frac{\partial}{\partial t} f\left(t, X_{t}\right)+\frac{\partial}{\partial x} f\left(t, X_{t}\right) \mu_{X}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(t, X_{t}\right) \sigma_{X}^{2}\right] \mathrm{d} t } \\
& +\frac{\partial}{\partial x} f\left(t, X_{t}\right) \sigma \mathrm{d} W_{t}
\end{aligned}
$$

Problem: Derive the stock price in the Black-Scholes model and show that it is strictly positive almost surely.

Solution:

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d \omega_{t}\right)
$$

$$
\begin{aligned}
& f_{(}(t, x)=\log _{0}(x) \\
& f_{t}=0, f_{x}=\frac{1}{x}, f_{x x}=-\frac{1}{x^{2}} \\
& d \log _{t}=f_{t} d t+f_{x} d x_{t}+\frac{1}{2} f_{x x} d[x]_{t} \\
&=\frac{1}{S_{t}} S_{t}\left(\mu d t+\sigma d \omega_{t}\right)+\frac{1}{2}\left(-\frac{1}{S^{2}}\right) S^{2} \sigma^{2} d t \\
&=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d \omega
\end{aligned}
$$

$$
\Rightarrow \log S_{t}=\log S_{0}+\left(\mu-\frac{1}{2} \Delta^{2}\right) t+\sigma W_{t}
$$

$$
S_{t}=S_{0} \exp \left\{\left(\mu-\frac{1}{2} \delta^{2}\right) t+\sigma W_{t}\right\}
$$

Geometric
Brownian Motion
\Rightarrow Stor price vemans stricuy positive of

$$
S_{0}>0
$$

Geometric Brownian Motion

Simulation Black-Scholes-Modell

Itô's Lemma: Multivariate Version

Theorem (Itô's Lemma for continuous semimartingales)

Let $X=\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)_{t \geq 0}$ be a continuous \mathbb{R}^{n}-valued semimartingale, and $f: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a $\bar{C}^{1,2}$-function, then

$$
\begin{aligned}
\mathrm{d} f\left(t, X_{t}\right)= & \frac{\partial}{\partial t} f\left(t, X_{t}\right) \mathrm{d} t+\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f\left(t, X_{t}\right) \mathrm{d} X_{t}^{i} \\
& +\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f\left(t, X_{t}\right) \mathrm{d}\left[X^{i}, X^{j}\right]_{t} .
\end{aligned}
$$

Special Case: $f(X, Y)=X Y$: Itô product rule:

$$
\mathrm{d}(X Y)_{t}=X_{t} \mathrm{~d} Y_{t}+Y_{t} \mathrm{~d} X_{t}+\mathrm{d}[X, Y]_{t}
$$

Itô's Lemma: Multivariate Version

Theorem (Itô's Lemma for multivariate Itô processes)

Let W be a k-dimensional standard Brownian motion, X be a \mathbb{R}^{n}-valued Itô process with dynamics

$$
\mathrm{d} X_{t}=\mu_{X} \mathrm{~d} t+\sigma_{X} \mathrm{~d} W_{t}
$$

for sufficiently smooth functions $\mu_{X}: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\sigma_{X}: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times k}$. Let $f: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a $C^{1,2}$-function with gradient $\nabla f\left(t, X_{t}\right)$ and Hessian matrix $H_{f}\left(t, X_{t}\right)$, then

$$
\begin{aligned}
\mathrm{d} f\left(t, X_{t}\right)= & {[\underbrace{\frac{\partial}{\partial t} f\left(t, X_{t}\right)}_{\in \mathbb{R}}+\underbrace{\nabla f\left(t, X_{t}\right)}_{\in \mathbb{R}^{n}} \cdot \underbrace{\mu_{X}}_{\in \mathbb{R}^{n}}+\frac{1}{2} \operatorname{tr}(\underbrace{H_{f}\left(t, X_{t}\right)}_{\in \mathbb{R}^{n \times n}} \underbrace{\sigma_{X}}_{\in \mathbb{R}^{n \times k}} \underbrace{\sigma_{X}^{\prime}}_{\in \mathbb{R}^{k \times n}})] \mathrm{d} t } \\
& +\underbrace{\nabla f\left(t, X_{t}\right)}_{\in \mathbb{R}^{n}} \underbrace{\sigma_{X}}_{\in \mathbb{R}^{n \times k}} \underbrace{\mathrm{~d} W_{t}}_{\in \mathbb{R}^{k}}
\end{aligned}
$$

$$
d S_{t}=S_{t}\left[\mu d t+\sigma d W_{t}\right] \quad, \quad d B_{t}=B_{t} r d t
$$

?] What are the gymico of $\frac{5}{10}$? $f(x, y)=\frac{x}{y}, f_{x}=\frac{1}{y}, f_{y}=-\frac{x}{y^{2}}$

$$
\begin{array}{rlrl}
d\left(\frac{S}{B}\right) & =\frac{1}{B} d S-\frac{S}{B^{2}} d B & & f_{x x}=0, f_{y y}=2 \frac{x}{y^{3}} \\
& =\frac{1}{B} S(\mu d t+\sigma d \omega)-\frac{S}{B^{2}} B r d t & f_{x y}=-\frac{1}{y^{2}} \\
& =\frac{S}{B}\left(\left(\mu-r \int d t+\sigma d \omega\right) \stackrel{\circledast}{=} \frac{S}{B}((\mu-r) d t+\sigma d \tilde{\omega}-\sigma \lambda d t)\right.
\end{array}
$$

Construct a menswe $\mathbb{Q} \sim \mathbb{P}$ s.t. $\frac{S}{D}$ is a \mathbb{Q}-martingale:
Under $\mathbb{Q}:$ draft must be zero

$$
\begin{aligned}
& d \tilde{W}=\lambda d t+d \omega c \Rightarrow d \omega=d \tilde{W}-\lambda d t * \\
& \quad \Rightarrow \mu-r-\sigma \lambda=0 \Leftrightarrow \lambda=\frac{\mu-r}{\sigma}
\end{aligned}
$$

Change of Measure

Definition (Equivalent Probability Measure)

Two probability measures \mathbb{P} and \mathbb{Q} are said to be equivalent, $\mathbb{P} \sim \mathbb{Q}$, if both measures possess the same null sets, i.e., for all events $A \in \mathcal{A}$

$$
\mathbb{P}(A)=0 \quad \Longleftrightarrow \quad \mathbb{Q}(A)=0 .
$$

- In our pricing applications, we consider equivalent probability measures that are associated to a numéraire.
- A numéraire is any self-financing portfolio ϕ that generates strictly positive wealth $V_{t}^{\phi}=\phi_{t}^{\prime} Y_{t}$
- A probability measure $\mathbb{Q} \sim \mathbb{P}$ is said to be an equivalent martingale measure if for every asset with price process $Y^{i}(i=1, \ldots, m)$ the price expressed in terms of the numéraire V_{t}^{ϕ} is a martingale under \mathbb{Q}.

Change of Measure - Radon-Nikodym Theorem

- The following theorem states how to switch between two equivalent probability measures.

Theorem (Radon-Nikodym)

Let $\mathbb{P} \sim \mathbb{Q}$ denote two equivalent probability measures, then there exists a unique (a.s.), positive random variable $\theta=\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}$ such that

$$
\mathbb{E}^{\mathbb{Q}}[X]=\mathbb{E}^{\mathbb{P}}[\theta X], \quad \mathbb{E}^{\mathbb{P}}[X]=\mathbb{E}^{\mathbb{Q}}\left[\frac{X}{\theta}\right]
$$

for all real-valued random variables X. In particular,

$$
\mathbb{Q}[A]=\mathbb{E}^{\mathbb{P}}\left[\theta 1_{A}\right]
$$

θ is called the Radon-Nikodym density (or Radon-Nikodym derivative).

- Critical Question: How can we perform a change of measure if the market is driven by Brownian motions?

Girsanov Theorem

Theorem (Girsanov)

Suppose that a measure \mathbb{Q} is defined in terms of a measure \mathbb{P} by the Radon-Nikodym process $\left(\theta_{t}\right)_{t \geq 0}$, with

$$
\mathrm{d} \theta_{t}=-\lambda_{t} \theta_{t} \mathrm{~d} W_{t}
$$

where W is a Brownian motion under \mathbb{P} and λ is a continuous adapted process. Then the process \widetilde{W} defined by $\widetilde{W}_{0}=0$ and

$$
\mathrm{d} \widetilde{W}_{t}=\lambda_{t} \mathrm{~d} t+\mathrm{d} W_{t}
$$

is a Brownian motion under \mathbb{Q}.
This works as well for vector BMs; in this case, write

$$
\mathrm{d} \theta_{t}=-\theta_{t} \lambda_{t}^{\prime} \mathrm{d} W_{t}, \quad \mathrm{~d} \widetilde{W}_{t}=\lambda_{t} \mathrm{~d} t+\mathrm{d} W_{t}
$$

Some Remarks

- The stochastic differential equation $\mathrm{d} \theta_{t}=-\lambda_{t} \theta_{t} \mathrm{~d} W_{t}$ has a unique solution, the Radon-Nikodym process:

$$
\theta_{t}=\mathcal{E}(\lambda)_{t}=\exp \left(-\int_{0}^{t} \lambda_{s} \mathrm{~d} W_{s}-\frac{1}{2} \int_{0}^{t} \lambda_{s}^{2} \mathrm{~d} s\right)
$$

- The process $\mathcal{E}(\lambda)$ is called the stochastic exponential or Doléans-Dade exponential of λ.
- The Radon-Nikodym derivative is given by

$$
\theta_{T}=\exp \left(-\int_{0}^{T} \lambda_{s} \mathrm{~d} W_{s}-\frac{1}{2} \int_{0}^{T} \lambda_{s}^{2} \mathrm{~d} s\right)
$$

- The Radon-Nikodym process is a \mathbb{P}-martingale, i.e.,

$$
\theta_{t}=\mathbb{E}_{t}\left[\theta_{T}\right]
$$

