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No Risk: Assumptions

We first consider the case without risks under the following assumptions:

1 The number of survivors equals the number of expected survivors (the
“best estimate”), i.e.,

Nx+1,t+1 = Nx ,tp
BE(t)
x ,t .

2 The “best estimate” cohort life table of time t + 1 follows from the
“best estimate” cohort life table of time t (by excluding the column
corresponding to time t), i.e.,

p
BE(t+1)
x ,t+1+τ = p

BE(t)
x ,t+1+τ .

3 Financial assets generate known returns rt+τ between periods t + τ
and t + τ + 1 with

rt+τ = Rt+τ (t + τ + 1).
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No Financial Risk...

It’s easy to check that without financial risk the following relation
holds

(
1 + Rt(t + τ)

)τ
=

τ−1∏
j=0

(1 + rj+τ ).

Proof :

Consequently,

a
BE(t)
x ,t =

∞∑
τ=1

τp
BE(t)
x ,t

τ−1∏
j=0

1

1 + rj+τ
.
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A Recursive Relation

We can now derive the following recursive relationship:

a
BE(t)
x ,t =

∞∑
τ=1

τp
BE(t)
x ,t

τ−1∏
j=0

1

1 + rj+τ

= p
BE(t)
x ,t

1

1 + rt

(
1 +

∞∑
τ=2

τ−1p
BE(t)
x+1,t+1

τ−1∏
j=1

1

1 + rj+τ

)

= p
BE(t)
x ,t

1

1 + rt

(
1 +

∞∑
τ=1

τp
BE(t)
x+1,t+1

τ−1∏
j=0

1

1 + rj+1+τ

)
= p

BE(t)
x ,t

1

1 + rt

(
1 +

∞∑
τ=1

τp
BE(t)
x+1,t+1

1

1 + Rt+1(t + 1 + τ)

)
= p

BE(t)
x ,t

1

1 + rt

(
1 + a

BE(t+1)
x+1,t+1

)
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Liabilities

Consequently,

a
BE(t)
x ,t = p

BE(t)
x ,t

1

1 + rt

(
1 + a

BE(t+1)
x+1,t+1

)
a
BE(t+1)
x+1,t+1 = (1 + rt)

a
BE(t)
x ,t

p
BE(t)
x ,t

− 1.

Therefore, the liabilities at t + 1 are now given by

L
BE(t+1)
t+1 =

∑
x∈X

Nx+1,t+1a
BE(t+1)
x+1,t+1

=
∑
x∈X

Nx ,tp
BE(t)
x ,t

(
(1 + rt)

a
BE(t)
x ,t

p
BE(t)
x ,t

− 1
)

= (1 + rt)L
BE(t)
t −

∑
x∈X

Nx ,tp
BE(t)
x ,t .
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Assets

The pension fund invests its assets at the capital market rate yielding
a return rt . Therefore, Ãt+1 = At(1 + rt).

Using these assets, the fund pays off the first unit of the annuities to
all surviving members of the fund at time t + 1. The total payoff
equals ∑

x∈X
Nx ,tp

BE(t)
x ,t .

Thus, the resulting value of the assets at time t + 1 is given by

At+1 = At(1 + rt)−
∑
x∈X

Nx ,tp
BE(t)
x ,t .
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Funding Ratio

The funding ratio at time t + 1 is thus

FR
BE(t+1)
t+1 =

At+1

L
BE(t+1)
t+1

=
At(1 + rt)−

∑
x∈X Nx ,tp

BE(t)
x ,t

L
BE(t)
t (1 + rt)−

∑
x∈X Nx ,tp

BE(t)
x ,t

.

Consequently, if

FR
BE(t)
t < 1: the funding ratio declines over time.

FR
BE(t)
t = 1: the funding ratio stays stable over time.

FR
BE(t)
t > 1: the funding ratio increases over time.

Christoph Hambel (TiSEM) Life Insurance Spring Term 2023 160 / 190



D
ra
ft

Micro Longevity Risk: Assumptions

We adapt the following no longevity risk assumption (Assumption 1,
Slide 155):

Nx+1,t+1 = Nx ,tp
BE(t)
x ,t .

Instead, we assume that survival probabilities are known in advance
although the remaining lifetime is uncertain. We assume that the
number of survivors after one period follows a binomial distribution:

N
(g)
x+1,t+1 ∼ B(N(g)

x ,t , p
(g)
x ,t ) ∀x ∈ X .

The “best estimate” cohort life table of time t + 1 follows from the
“best estimate” cohort life table of time t (by excluding the column
corresponding to time t), i.e.,

p
BE(t+1)
x ,t+1+τ = p

BE(t)
x ,t+1+τ .
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No Interest Rate Risk

For the moment, we stick to the assumption that financial assets
generate known returns rt+τ between periods t + τ and t + τ +1 with

rt+τ = Rt+τ (t + τ + 1).

Under these assumptions, the recursive relationship for the price of an
annuity contract remains valid, i.e.,

a
BE(t)
x ,t = p

BE(t)
x ,t

1

1 + rt

(
1 + a

BE(t+1)
x+1,t+1

)
,

a
BE(t+1)
x+1,t+1 = (1 + rt)

a
BE(t)
x ,t

p
BE(t)
x ,t

− 1.
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Assets, Liabilities, and Funding Ratio

We can now calculate the one-period-ahead assets, liabilities, and the
funding ratio:

Assets (same calculations as before):

At+1 = At(1 + rt)−
∑
x∈X

Nx+1,t+1︸ ︷︷ ︸
̸=Nx,tp

BE(t)
x,t

Liabilities (same calculations as before):

L
BE(t+1)
t+1 =

∑
x∈X

Nx+1,t+1

(
(1 + rt)

a
BE(t)
x ,t

p
BE(t)
x ,t

− 1
)

Funding ratio:

FRt+1 =
At+1

L
BE(t+1)
t+1

=
At(1 + rt)−

∑
x∈X Nx+1,t+1∑

x∈X Nx+1,t+1

(
(1 + rt)

a
BE(t)
x,t

p
BE(t)
x,t

− 1
)
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Illustration

We illustrate micro longevity risk using the following stylized example.

We consider one age group (x = 65) at one specific year (namely,
t = 2019).

We present results for males and females separately.

We generate 10,000 scenarios.

We consider N65,2019 = 1,000, 10,000, and 50,000.

We assume rt+τ = 0 for all τ ≥ 0.

For the life table at time t, we use the Lee-Carter best estimate,
based on the sample of Dutch males and females 1970-2019.

Males: q
BE(2019)
65,2019 = 1.07%, p

BE(2019)
65,2019 = 98.93%, a

BE(2019)
65,2019 = 18.95.

Females: q
BE(2019)
65,2019 = 0.76%, p

BE(2019)
65,2019 = 99.24%, a

BE(2019)
65,2019 = 21.96.
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Implementation in Matlab

To simulate a sample from a binomial distribution with parameters n
and p, you could make use of the command

binornd(n,p),

where n = N65,2019 and p = p
BE(2019)
65,2019 .

To make a histogram of the data in the vector y (e.g., simulated
funding ratio), you could make use of the command

histogram(y,edges),

where edges is a vector with the edges of the histogram columns.
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Histogram Survivors
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Histogram Funding Ratio
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Histogram Funding Ratio
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Histogram Funding Ratio
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Macro Longevity Risk: Assumptions

We adapt the following no macro longevity risk assumption
(Assumption 2, Slide 155):

p
BE(t+1)
x ,t+1+τ = p

BE(t)
x ,t+1+τ

Instead of assuming that the best estimate cohort life table of time
t + 1 follows from the best estimate cohort life table of time t, we
follow a model-based approach.

There are many ways in which Macro Longevity Risk can be
quantified.

We choose and illustrate one specific way, focusing on the Lee-Carter
approach.
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Macro Longevity Risk: Simplifying Assumptions

Recall that the best estimate survival probabilities are constructed as
follows:

p
BE(t)
x ,t+τ = exp

(
− m̂

BE(t)
x ,t+τ

)
,

where

m̂
BE(t)
x ,t+τ = exp

(
α̂
(t)
x + β̂

(t)
x κ̂

BE(t)
t+τ

)
,

κ̂
BE(t)
t+τ = κ̂

(t)
t + τ ĉ(t)

The superindex t in case of α̂
(t)
x , β̂

(t)
x , ĉ(t), κ̂

(t)
t refers to the sample

based on which these parameters have been estimated, namely, the
sample with data from time t0 = t − T to t0 + T = t.

Christoph Hambel (TiSEM) Life Insurance Spring Term 2023 171 / 190



D
ra
ft

Macro Longevity Risk: Simplifying Assumptions

To keep the setting simple (although the notation is already
cumbersome), we make the following simplifying assumption:

Macro longevity risk only due to change in κ̂
(t+1)
t+1 compared to the

best estimate κ̂
BE(t)
t+1 = κ̂

(t)
t + ĉ(t):

κ̂
(t+1)
t+1 = κ̂

(t)
t + ĉ(t) + δt+1.

We then (re-)estimate ĉ(t+1), now using the sample with data from
time t0 = t − T to t0 + T + 1 = t + 1:

ĉ(t) =
κ̂
(t)
t − κ̂

(t)
t−T

T − 1
−→ ĉ(t+1) =

κ̂
(t+1)
t+1 − κ̂

(t+1)
t+1−(T+1)

T

No macro longevity risk due to a possible change in α̂
(t+1)
x or β̂

(t+1)
x .
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Macro Longevity Risk: Next Period’s Life Table

Recall: p
BE(t)
x ,t+τ = e−e

α̂
(t)
x +β̂

(t)
x κ̂

BE(t)
t+τ

Therefore,

p
BE(t+1)
x ,t+1+τ = e−e

α̂
(t+1)
x +β̂

(t+1)
x κ̂

BE(t+1)
t+1+τ

= e−e
α̂
(t)
x +β̂

(t)
x

(
κ̂
(t+1)
t+1

+τ ĉ(t+1)
)

= e−e
α̂
(t)
x +β̂

(t)
x

(
κ̂
(t)
t +ĉ(t)+δt+1+τ

κ̂
(t+1)
t+1

−κ̂
(t+1)
t+1−(T+1)
T

)
= e−e

α̂
(t)
x +β̂

(t)
x

(
κ̂
(t)
t +ĉ(t)+δt+1+τ

κ̂
(t)
t +ĉ(t)+δt+1−κ̂

(t+1)
t+1−(T+1)

T

)
= e−e

α̂
(t)
x +β̂

(t)
x

(
κ̂
(t)
t +ĉ(t)+τ

κ̂
(t)
t +ĉ(t)−κ̂

(t+1)
t+1−(T+1)

T
+δt+1(1+

τ
T

)

)
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Macro Longevity Risk: Assets and Liabilities

Maintaining assumptions 1 and 3 from slide 155, we can now
calculate the evolution of assets and liabilities.

Assets (same calculations as before):

At+1 = At(1 + rt)−
∑
x∈X

Nx+1,t+1︸ ︷︷ ︸
=Nx,tpx,t

= (1 + rt)
∑
x∈X

Nx ,ta
BE(t)
x ,t −

∑
x∈X

Nx ,tpx ,t

Liabilities (same calculations as before):

L
BE(t+1)
t+1 =

∑
x∈X

Nx+1,t+1a
BE(t+1)
x+1,t+1 =

∑
x∈X

Nx ,tpx ,ta
BE(t+1)
x+1,t+1

where

a
BE(t+1)
x+1,t+1 =

∞∑
τ=1

τp
BE(t+1)
x+1,t+1

τ−1∏
j=0

1

1 + rt+1+j
.
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Macro Longevity Risk: Funding Ratio

Consequently, the funding ratio becomes

FRt+1 =
(1 + rt)

∑
x∈X Nx ,ta

BE(t)
x ,t −

∑
x∈X Nx ,tpx ,t∑

x∈X Nx ,tpx ,ta
BE(t+1)
x+1,t+1

.

To illustrate the effect of macro longevity risk, we consider only one
age group:

FRt+1 =
(1 + rt)a

BE(t)
x ,t − px ,t

px ,ta
BE(t+1)
x+1,t+1
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Illustration

We illustrate macro longevity risk using the following stylized example.

We consider one age group (x = 65) at one specific year (namely,
t = 2019).

We present results for males and females separately.

We generate 10,000 scenarios.

We assume rt+τ = 0 for all τ ≥ 0.

We assume δt+1 ∼ N
(
0, (σ

(g)
δ )2

)
with σ

(m)
δ = 2.8653, σ

(f )
δ = 3.4771.

For the life table at time t, we use the Lee-Carter best estimate,
based on the sample of Dutch males and females 1970-2019.

Males: q
BE(2019)
65,2019 = 1.07%, p

BE(2019)
65,2019 = 98.93%, a

BE(2019)
65,2019 = 18.95.

Females: q
BE(2019)
65,2019 = 0.76%, p

BE(2019)
65,2019 = 99.24%, a

BE(2019)
65,2019 = 21.96.
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Implementation in Matlab

To simulate a sample from a standard normal distribution, you could
make use of the command

Z=randn(nrows,ncolumns).

The matrix Z with dimension nrows × ncolumns then contains
pseudo random numbers from a standard normal distribution.

If X ∼ N (µ, σ2), we can write X = µ+ σZ , where Z ∼ N (0, 1).
This can be used to get a sample from a N (µ, σ2)-distribution.
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Histogram Annuity Factor
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Histogram Funding Ratio
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Interest Rate Risk: Assumptions

We now adapt Assumption 3 on Slide 155 that returns are known in
advance. We rather replace it by a term structure model for the
evolution of interest rates.

There are many ways to do this. As illustration, we shall make use of
the Vasicek model, applied to term structure data provided by DNB
(the Dutch Central Bank),

rt+1 = µ+ θrt + σεt+1, Rt(t + 1) = rt .

Based on DNB-data from 2019, we find

rt+1 = 0.0018 + 0.5522rt + 0.0026εt+1.

In the lecture Valuation and Risk Management (QFAS master), we
are going to study various other interest rate risk models and discuss
the pros and cons of these models.
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Interest Rate Risk: Fit to the Data
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Interest Rate Risk: Forecast
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Interest Rate Risk: Assets and Liabilities

Maintaining assumptions 1 and 2 on slide 155, we can now calculate
the evolution of assets and liabilities.

Assets (same calculations as before):

At+1 = At(1 + rt)−
∑
x∈X

Nx+1,t+1︸ ︷︷ ︸
=Nx,tpx,t

= (1 + rt)
∑
x∈X

Nx ,ta
BE(t)
x ,t −

∑
x∈X

Nx ,tpx ,t

Liabilities (same calculations as before):

L
BE(t+1)
t+1 =

∑
x∈X

Nx+1,t+1a
BE(t+1)
x+1,t+1 =

∑
x∈X

Nx ,tpx ,ta
BE(t+1)
x+1,t+1

where

a
BE(t+1)
x+1,t+1 =

∞∑
τ=1

τp
BE(t+1)
x+1,t+1

1(
1 + Rt+1(t + 1 + τ)

)τ .
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Interest Rate Risk: Funding Ratio

Consequently, the funding ratio becomes

FRt+1 =
(1 + rt)

∑
x∈X Nx ,ta

BE(t)
x ,t −

∑
x∈X Nx ,tpx ,t∑

x∈X Nx ,tpx ,ta
BE(t+1)
x+1,t+1

.

To illustrate the effect of interest rate risk, we consider only one age
group:

FRt+1 =
(1 + rt)a

BE(t)
x ,t − px ,t

px ,ta
BE(t+1)
x+1,t+1
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Illustration

We illustrate interest rate risk using the following stylized example.

We consider one age group (x = 65) at one specific year (namely,
t = 2019).

We present results for males and females separately.

We generate 10,000 scenarios.

We assume rt+1 = 0.0018 + 0.5522rt + 0.0026εt+1 for all τ ≥ 0 and
r2019 = −0.51%.

For the life table at time t, we use the Lee-Carter best estimate,
based on the sample of Dutch males and females 1970-2019.

Males: q
BE(2019)
65,2019 = 1.07%, p

BE(2019)
65,2019 = 98.93%, a

BE(2019)
65,2019 = 18.95.

Females: q
BE(2019)
65,2019 = 0.76%, p

BE(2019)
65,2019 = 99.24%, a

BE(2019)
65,2019 = 21.96.
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Histogram Annuity Factor
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Histogram Funding Ratio
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All Risks Combined

We now switch on all types of risk as described in the previous
sections.

In addition, we add stock market risk and allow the pension fund to
invest parts of its assets in risky stocks.

We assume an annual volatility of σ = 20% and an expected annual
rate of return of µ = 5%, where the return is normally distributed,
i,e., Rt+1 ∼ N (µ, σ2) (Markowitz model).

Assuming that the fund invests a fraction π of its assets in the stock
market, the assets evolve according to

At+1 = At(1− π)(1 + rt) + Atπ(1 + Rt+1)−
∑
x∈X

Nx+1,t+1

= At [1 + rt + π(Rt+1 − rt)]−
∑
x∈X

Nx+1,t+1.
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Histogram Funding Ratio

Investment Assets: π = 0% stock.
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Histogram Funding Ratio

Investment Assets: π = 20% stock, with expected annual return µ = 5% and annual
volatility σ = 20%.
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