# Part IV

# Pricing under all Types of Risk

145 / 190



### 7 Setting

#### Illustrations

- No Risk
- Micro Longevity Risk
- Macro Longevity Risk
- Interest Rate Risk
- All Risks Combined



- Now, we have gathered all the tools and techniques to price life insurance contracts and annuities in a realistic setting.
- We consider three different types of risk
  - Micro Longevity Risk (Part I): risk because (for given death probabilities) an individual's *remaining lifetime* is unknown.
  - Interest Rate Risk (Part II): risk because future *interest rates* are unknown.
  - Macro Longevity Risk (Part III): risk because *future death probabilities* are unknown.
- We study the pricing of life insurance contracts and annuities in various settings:
  - No risk (tedious but useful)
  - Micro longevity risk
  - Macro longevity risk
  - Interest rate risk
  - All risks combined

## Recall: Three Sources of Risk









- We only consider a single group g (g suppressed from now on) at time t.
- Members of this group belong to a cohort (x, t). The number of individuals belonging to cohort (x, t) is given by N<sub>x,t</sub>.
- All individuals have bought an immediate single life annuity from a fund at time t. This annuity promises to pay off 1 unit per period, starting in the next period t + 1.

 $\rightarrow$  This assumption is not realistic but helps us come up with closed-form solutions to illustrate the impact of the various risk sources.

• The fund invests the received payments in assets, in order to be able to pay off the promised amounts of the annuities.



• The annuity prices are based on "best estimate" cohort life table at time t, explicitly indicated by BE(t), i.e.,

$$a_{x,t}^{BE(t)} = \sum_{\tau=1}^{\infty} {}_{\tau} p_{x,t}^{BE(t)} rac{1}{\left(1 + R_t(t+ au)
ight)^{ au}}.$$

• The pension fund's total liabilities  $L_t^{BE(t)}$  are given by

$$L_t^{BE(t)} = \sum_{x \in \mathcal{X}} N_{x,t} a_{x,t}^{BE(t)}.$$

• At time t the fund's total assets are denoted by  $A_t$ .

151 / 190

### Recall: Funding Ratio





152 / 190



• Thus, at time t, the fund's funding ratio  $(FR_t)$  is defined as

$$FR_t^{BE(t)} = \frac{A_t}{L_t^{BE(t)}}.$$

- The funding ratio does obviously depend on all three sources of risk under consideration.
- We ask the question: What can we say about  $FR_{t+1}$ , considering
  - No risk
  - Micro longevity risk
  - Macro longevity risk
  - Interest rate risk
  - All risks combined