Table of Contents

Introduction

2 Relevance of Macro Longevity Risk

- First Pillar: AOW
- Second Pillar: Pension Funds

Modeling Mortality

Benchmark Model

- The Lee-Carter Model
- Alternative Estimation
- Some Applications and Extensions

5 The AG2022 Model and COVID-19

- Model and Projections
- Closure of the Life Table

6 Model Risk: A Very Brief Introduction

• Let $T_{x,t}^{(g)}$ denote the (random) remaining lifetime of somebody of age x, group g, at time t with probability distribution function

$$F_{x,t}^{(g)}(\tau) = \mathbb{P}(T_{x,t}^{(g)} \leq \tau).$$

• Assuming that the remaining lifetime has a probability density function $f_{x,t}^{(g)}$ such that

$$\mathbb{P}(\tau < T_{x,t}^{(g)} < \tau + \mathsf{d}\tau) = f_{x,t}^{(g)}(\tau)\mathsf{d}\tau.$$

• τ -years survival probability of an individual of age x:

$$_{ au} p_{x,t}^{(g)} = 1 - F_{x,t}^{(g)}(au)$$

Force of Mortality

• The force of mortality (or hazard rate of death) is defined as

$$h_{x,t}^{(g)}(au) = \mu_{x+ au,t+ au}^{(g)} = -rac{\partial}{\partial au} \ln(_{ au} p_{x,t}^{(g)})$$

representing the instantaneous rate of mortality at a certain age measured on an annualized basis.

• Formally,

$$\mu_{x+\tau,t+\tau}^{(g)} = \frac{f_{x,t}^{(g)}(\tau)}{1 - F_{x,t}^{(g)}(\tau)}.$$

• The instantaneous survival probability can be rewritten in terms of the hazard rate

$$\mathbb{P}(\tau < T_{x,t}^{(g)} < \tau + \mathsf{d}\tau) = f_{x,t}^{(g)}(\tau)\mathsf{d}\tau = \mu_{x+\tau,t+\tau}^{(g)} \cdot {}_{\tau} p_{x,t}^{(g)}\mathsf{d}\tau$$

Force of Mortality

• Integrating the force of mortality $\mu_{x+\tau,t+\tau}^{(g)} = -\frac{\partial}{\partial \tau} \ln(\tau p_{x,t}^{(g)})$ yields

$$\int_0^s \mu_{x+\tau,t+\tau}^{(g)} \mathrm{d}\tau = -\int_0^s \frac{\partial}{\partial \tau} \ln(\tau p_{x,t}^{(g)}) \mathrm{d}\tau = -\ln(s p_{x,t}^{(g)}).$$

• Consequently,

$${}_{s}p_{x,t}^{(g)} = \exp\Big(-\int_{0}^{s}\mu_{x+\tau,t+\tau}^{(g)}\mathrm{d} au\Big).$$

- Assumption: $\mu_{x+\tau,t+\tau}^{(g)} = \mu_{x,t}^{(g)}$ if $0 \le \tau < 1$.
- Under this assumption, the survival probability is

$$_{s}p_{x,t}^{(g)} = \exp\left(-s \cdot \mu_{x,t}^{(g)}\right).$$

• In particular, the one-year survival probability can be rewritten as

$$p_{x,t}^{(g)} = {}_1 p_{x,t}^{(g)} = \exp \left(- \mu_{x,t}^{(g)} \right).$$

• Let $\tau = \tau_1 + \tau_2$. Then, the τ -years survival probability is given by

$$_{\tau}p_{x,t}^{(g)} = {}_{\tau_1}p_{x,t}^{(g)} \cdot {}_{\tau_2}p_{x+\tau_1,t+\tau_1}^{(g)}.$$

• Proof:

• In general, the au-years survival probability can be decomposed into

$${}_{\tau} p_{{\scriptscriptstyle X},t}^{(g)} = \prod_{k=0}^{ au-1} p_{{\scriptscriptstyle X}+k,t+k}^{(g)}, \qquad p_{{\scriptscriptstyle X},t}^{(g)} = 1 - q_{{\scriptscriptstyle X},t}^{(g)}.$$

• Here, the one-year survival and death probabilities can be rewritten as

$$egin{aligned} p_{x,t}^{(g)} &= \exp(-\mu_{x,t}^{(g)}), \ q_{x,t}^{(g)} &= 1 - \exp(-\mu_{x,t}^{(g)}). \end{aligned}$$

- **Moral**: Modeling the force of mortality is sufficient to model the survival and death probabilities.
 - \rightarrow How to estimate the historical force of mortality?
 - \rightarrow How to model the evolution of the force of mortality?

Example: Lexis Diagram

- Let $n_{x,t}^{(g)}$ lives contribute to the observations in the white square (Lexis diagram).
- Assume life $i \in N_{x,t}^{(g)} = \{1, \ldots, n_{x,t}^{(g)}\}$ is observed between the ages of $x + t_i$ and $x + s_i$ (with $0 \le t_i < s_i \le 1$).
- The exposure $E_{x,t}^{(g)}$ is defined as

$$E_{x,t}^{(g)} = \sum_{i=1}^{n_{x,t}^{(g)}} (s_i - t_i).$$

D^(g)_{x,t} ∈ N denotes the number of deaths observed in the white square.
I^(g)_{x,t} ⊆ N^(g)_{x,t} is the subset of observations i terminated by death.

Example: Lexis Diagram

Likelihood Function

1

- Assume that the n^(g)_{x,t} lives are independent, i.e., their remaining lifetimes T^(g)_{x,t} are stochastically independent.
- The likelihood of the $n_{x,t}^{(g)}$ observations is

$$egin{aligned} &L_{x,t}^{(g)} = \prod_{i \in I_{x,t}^{(g)}} f_{x+t_i,t}^{(g)}(s_i-t_i) \prod_{i \notin I_{x,t}^{(g)}} \left(1-F_{x+t_i,t}^{(g)}(s_i-t_i)
ight) \ &= \prod_{i \in I_{x,t}^{(g)}} \mu_{x+s_i,t+s_i-t_i}^{(g)} \cdot s_{i-t_i}
ho_{x+t_i,t}^{(g)} \prod_{i \notin I_{x,t}^{(g)}} s_{i-t_i}
ho_{x+t_i,t}^{(g)}. \end{aligned}$$

• Using our standing assumption $\mu_{x+s_i,t+s_j}^{(g)} = \mu_{x,t}^{(g)}$, $s_i, s_j \in [0,1]$:

$$s_{i-t_{i}}p_{x+t_{i},t}^{(g)} = \exp\left(-(s_{i}-t_{i})\mu_{x+s_{i},t+s_{i}-t_{i}}^{(g)}
ight) = \exp\left(-(s_{i}-t_{i})\mu_{x,t}^{(g)}
ight)$$

Likelihood Function

I

• Consequently, the likelihood can be expressed in terms of $\mu_{x,t}^{(g)}$:

$$\begin{split} \frac{L_{x,t}^{(g)}}{L_{x,t}^{(g)}} &= \prod_{i \in I_{x,t}^{(g)}} \mu_{x,t}^{(g)} \exp\left(-(s_i - t_i)\mu_{x,t}^{(g)}\right) \prod_{i \notin I_{x,t}^{(g)}} \exp\left(-(s_i - t_i)\mu_{x,t}^{(g)}\right) \\ &= \prod_{i \in I_{x,t}^{(g)}} \mu_{x,t}^{(g)} \prod_{i \in \mathcal{N}_{x,t}^{(g)}} \exp\left(-(s_i - t_i)\mu_{x,t}^{(g)}\right) \\ &= \left[\mu_{x,t}^{(g)}\right]^{D_{x,t}^{(g)}} \exp\left(-\sum_{i \in \mathcal{N}_{x,t}^{(g)}} (s_i - t_i)\mu_{x,t}^{(g)}\right). \end{split}$$

• Recall: exposure is defined as $E_{x,t}^{(g)} = \sum_{i=1}^{n_{x,t}^{(g)}} (s_i - t_i)$, i.e.,

$$L_{x,t}^{(g)} = \left[\mu_{x,t}^{(g)} \right]^{D_{x,t}^{(g)}} \exp\left(- E_{x,t}^{(g)} \mu_{x,t}^{(g)} \right).$$

• Maximizing the likelihood function

$$L_{x,t}^{(g)} = \left[\mu_{x,t}^{(g)}\right]^{D_{x,t}^{(g)}} \exp\left(-E_{x,t}^{(g)}\mu_{x,t}^{(g)}\right)$$

w.r.t. $\mu_{x,t}^{(g)}$ results in the maximum likelihood estimate

$$\widehat{\mu}_{x,t}^{(g)} = rac{D_{x,t}^{(g)}}{E_{x,t}^{(g)}}.$$

• The ratio $\frac{D_{x,t}^{(g)}}{E_{x,t}^{(g)}}$ is called the *raw central death rate* and usually denoted by $m_{x,t}^{(g)}$.

Proof: Maximum Likelihood Estimate

Central Death Rates

Christoph Hambel (TiSEM)

Spring Term 2023

Measuring and Modeling Mortality

Is For past and present periods, we estimate

$$egin{aligned} \widehat{p}_{x,t}^{(g)} &= \exp(-m_{x,t}^{(g)}), \ \widehat{q}_{x,t}^{(g)} &= 1 - \exp(-m_{x,t}^{(g)}) \end{aligned}$$

with
$$m_{x,t}^{(g)} = rac{D_{x,t}^{(g)}}{E_{x,t}^{(g)}}.$$

② For future periods, $D_{x,t+...}$ and $E_{x,t+...}$ are unobserved, and we need *models* to predict the future probabilities

$$egin{aligned} p_{x,t}^{(g)} &= \exp(-\mu_{x,t}^{(g)}), \ q_{x,t}^{(g)} &= 1 - \exp(-\mu_{x,t}^{(g)}). \end{aligned}$$

- Lee & Carter (1992) and others: directly model $m_{x,t}^{(g)}$.
- AG2022 and others: model $D_{x,t}^{(g)} \mid E_{x,t}^{(g)} \sim \mathcal{P}(\mu_{x,t}^{(g)} E_{x,t}^{(g)})$.

Life Table of Group g

