Part III

Contingent Claim Pricing

European / American Options

• This chapter studies examples for contingent claim pricing in several tangible specifications of the GSSM.

Option

- A European option is a contract between two counterparties, whereby the buyer (= holder) has the right to buy (= Call option) or to sell (= Put option) the underlying from/to the seller (= stillholder) for a predetermined strike price K at its maturity T.
- ② An American option has the feature that the option can be exercised *before* maturity, i.e., in [0, T].
 - Option profile at maturity T on a stock with price process S:

$$C_T = (S_T - K)^+ = \max\{S_T - K, 0\}$$

 $P_T = (K - S_T)^+ = \max\{K - S_T, 0\}$

Option Profiles

Table of Contents

- Black Scholes Revisited
 - The Fastest Way to the Black-Scholes Formula
 - Example: Double-barrier Option: Pricing by the BSPDE
- Option Pricing in Incomplete Markets
 - The Heston Model
 - Parameter Choice: Calibration vs. Estimation
- 10 Models with Dividends
 - The Black-Scholes Setting
 - General Setting

How to come up with the Black-Scholes Formula

- The Black-Scholes formula is probably the most famous formula in quantitative finance and the starting point of modern financial mathematics.
- Black and Scholes (1973) derive the formula by transforming the BSPDE to the heat equation, which has a well-known solution

$$r \pi_C = \frac{\partial \pi_C}{\partial t} + \frac{\partial \pi_C}{\partial S} Sr + \frac{1}{2} \frac{\partial^2 \pi_C}{\partial S^2} S^2 \sigma_S^2$$

- s.t. $\pi_C(T, S_T) = \max(S_T K, 0)$.
- Besides solving the BSPDE, the problem can be tackled by several approaches, e.g.,
 - Pricing under the EMM Q
 - Pricing under \mathbb{P} using the SDF / numéraire portfolio
 - Taking the limit of a sequence of binomial models
 - Splitting the payoff into two parts and tackle them under two different measures
 - ...

Examples: Pricing Approaches

The Fastest Way to the Black-Scholes Formula

The European call option has payoff function

$$C_T = \max(S_T - K, 0) = 1_{\{S_T \ge K\}}(S_T - K).$$

• The price of the European put option with payoff $P_T = \max(K - S_T, 0)$ can be obtained from the put-call parity

$$P_t = C_t - S_t + Ke^{-r(T-t)}.$$

- We can decompose the call option into two options;
 - **1** a long position in the stock-or-nothing option which has payoff $1_{\{S_T>K\}}S_T$
 - ② a short position in the *cash-or-nothing option* which has payoff $1_{\{S_T \geq K\}} K$.
- The price of the call option is determined if we know the prices of the stock-or-nothing option and the cash-or-nothing option.

Cash-or-nothing Option under Q

• Cash-or-nothing option, $C_T^m = 1_{\{S_T > K\}} K$ will be priced under \mathbb{Q} :

$$\frac{C_0^m}{M_0} = \mathbb{E}^{\mathbb{Q}} \Big[\frac{C_T^m}{M_T} \Big] = \frac{K}{M_T} \, \mathbb{E}^{\mathbb{Q}} \big[\mathbf{1}_{\{S_T \geq K\}} \big] = \frac{K}{M_T} \, \mathbb{Q}_M(S_T \geq K).$$

ullet Under $\mathbb Q$, the evolution of the stock price is given by

$$\mathrm{d} S_t = r S_t \, \mathrm{d} t + \sigma S_t \, \mathrm{d} W_t^{\mathbb{Q}},$$

where $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q} .

• Therefore:

$$S_T = S_0 \exp \left(\left(r - \frac{1}{2}\sigma^2 \right) T + \sigma \sqrt{T} Z \right), \qquad Z \stackrel{\mathbb{Q}}{\sim} \textit{N}(0,1)$$

$$\implies \mathbb{Q}(S_T \geq K) = \Phi(d_2), \quad d_2 = \frac{\log(S_0/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

Stock-or-nothing option under \mathbb{Q}_S

• Stock-or-nothing option, $C_T^s = 1_{\{S_T \geq K\}} S_T$:

$$\frac{C_0^s}{S_0} = E^{\mathbb{Q}_S} \left[\frac{C_T^s}{S_T} \right] = E^{\mathbb{Q}_S} \left[1_{\{S_T \ge K\}} \right] = \mathbb{Q}_S(S_T \ge K).$$

• Under \mathbb{Q}_S , the evolution of the stock price is given by

$$dS_t = (r + \sigma^2)S_t dt + \sigma S_t dW_t^{\mathbb{Q}_S}$$

where $W^{\mathbb{Q}_S}$ is a Brownian motion under \mathbb{Q}_S .

Therefore:

$$S_T = S_0 \exp \left(\left(r + \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} Z \right), \qquad Z \stackrel{\mathbb{Q}_S}{\approx} N(0, 1)$$

$$\implies \mathbb{Q}_{\mathcal{S}}(S_T \geq K) = \Phi(d_1), \quad d_1 = \frac{\log(S_0/K) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

The Black-Scholes Formula

• Putting everything together:

$$C_0 = C_0^s - C_0^m = S_0 \Phi(d_1) - e^{-rT} K \Phi(d_2).$$

• The price of the call option is equal to the current value of the stock times the probability under \mathbb{Q}_S that the option will end in the money, minus the current value of the strike times the probability under \mathbb{Q} that the option will end in the money.

Problem: Derive the \mathbb{Q}_S -Stock Dynamics

Problem: Derive the \mathbb{Q}_S -Stock Dynamics

Option Price versus Intrinsic Value

Critique: Black-Scholes Model

- Volatility, interest rate, expected return are assumed to be constant.
 → Volatility Smile
- ullet Returns are assumed to be normally distributed. \longrightarrow Underestimation of extreme events.
- Model builds upon a complete market without frictions (no taxes, transaction costs, short-selling constraints, ...).
- Implied volatility \neq historical volatility
 - These caveats become visible if one investigates what volatilities are necessary to explain option prices by the Black-Scholes formula.
 - Implied volatility is not constant, but depends on K and T.
 - If the option is at-the-money, implied volatility is lowest (volatility smile).
- Some of these points can be tackled by adding non-traded state variables to the model.

A Double-barrier Option

- A perpetual up-and-out down-and-in digital double barrier option is a contract that is specified by
 - an underlying S_t (for instance a stock index)
 - a lower barrier L
 - an upper barrier U
 - a fixed payoff amount K.
- The contract pays the amount K when the stock price S_t reaches the lower barrier L, but only if the stock price has not reached the upper barrier first. (i.e., the contract "knocks out" when the stock price S_t reaches U.)
- As long as neither the lower nor the upper barrier has been reached, the contract stays alive.
- Therefore the time of expiry of the contract is random (determined in terms of the process S_t).

PDE Approach

• Assume that the BS model holds for the stock price S_t . The Black-Scholes equation for the pricing function $\pi_C(t, S_t)$ is in general

$$\frac{\partial \pi_C}{\partial t}(t,S) + rS \frac{\partial \pi_C}{\partial S}(t,S) + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 \pi_C}{\partial S^2}(t,S) = r\pi_C(t,S).$$

• Since π_C does not depend on t, this reduces to the ODE

$$rS\frac{\mathrm{d}\pi_{C}}{\mathrm{d}S}(S)+\frac{1}{2}\sigma^{2}S^{2}\frac{d^{2}\pi_{C}}{\mathrm{d}S^{2}}(S)=r\pi_{C}(S).$$

Boundary conditions for the up-and-out down-and-in option:

$$\pi_C(U) = 0, \qquad \pi_C(L) = K.$$

Solving the ODE

- We have a linear homogeneous second-order ODE, so the general solution is a linear combination of two particular solutions.
- These solutions should be self-financing portfolios whose values depend only on S_t . One solution is S_t itself (obviously!), another is $S_t^{-\gamma}$ with $\gamma = 2r/\sigma^2$.
- The solution is therefore given by

$$\pi_C(S_t) = c_1 S_t + c_2 S_t^{-\gamma}$$

where the constants c_1 and c_2 should be chosen such that

$$\pi_C(U) = c_1 U + c_2 U^{-\gamma} = 0, \quad \pi_C(L) = c_1 L + c_2 L^{-\gamma} = K.$$

• This linear system has a unique solution.

Option Price

Putting everything together yields

$$\pi_{C}(t,S_{t}) = \frac{L^{\gamma}K}{U^{\gamma+1}-L^{\gamma+1}}(U^{\gamma+1}S_{t}^{-\gamma}-S_{t}).$$

Table of Contents

- Black Scholes Revisited
 - The Fastest Way to the Black-Scholes Formula
 - Example: Double-barrier Option: Pricing by the BSPDE
- Option Pricing in Incomplete Markets
 - The Heston Model
 - Parameter Choice: Calibration vs. Estimation
- 10 Models with Dividends
 - The Black-Scholes Setting
 - General Setting

An Example: The Heston Model

Modeling Stochastic Volatility by a CIR process

$$\begin{split} \mathrm{d}M_t &= M_t r \mathrm{d}t \\ \mathrm{d}S_t &= S_t [\mu \mathrm{d}t + \sqrt{\nu_t} \mathrm{d}W_{1,t}] \\ \mathrm{d}\nu_t &= \kappa (\theta - \nu_t) \mathrm{d}t + \sigma \sqrt{\nu_t} \mathrm{d}(\rho W_{1,t} + \sqrt{1 - \rho^2} W_{2,t}) \end{split}$$

- The model has five input parameters:
 - ν_0 , the initial variance.
 - $oldsymbol{ heta}$, the mean-reversion variance of the stock price
 - \bullet κ , the mean-reversion speed of the variance of the stock price
 - $m{\circ}$ ρ the correlation of the two Wiener processes.
 - \bullet σ the volatility of the volatility, or 'vol of vol'
- n = 3 state variables, k = 2 sources of risk, and m = 2 assets:

$$\mu_{X} = \begin{bmatrix} \mu S_{t} \\ r M_{t} \\ \kappa(\theta - \nu_{t}) \end{bmatrix}, \quad \sigma_{X} = \begin{bmatrix} \sqrt{\nu_{t}} S_{t} & 0 \\ 0 & 0 \\ \sigma \rho \sqrt{\nu_{t}} & \sigma \sqrt{\nu_{t}} \sqrt{1 - \rho^{2}} \end{bmatrix}, \quad \pi_{Y} = \begin{bmatrix} S_{t} \\ M_{t} \end{bmatrix}$$

Economic Properties

• The model is free of arbitrage: The NA criterion $\mu_Y - \pi_Y r = \sigma_Y \lambda$ yields

$$\begin{bmatrix} \mu S \\ rM \end{bmatrix} - r \begin{bmatrix} S \\ M \end{bmatrix} = \begin{bmatrix} \sqrt{\nu_t} S & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

- The market price of stock risk is uniquely determined, $\lambda_1 = \frac{\mu r}{\sqrt{\nu_t}}$.
- The market price of volatility risk λ_2 can be chosen arbitrarily.
- The model is obviously incomplete. Thus for any given numéraire, the corresponding EMM is not unique.
- Consequently, neither the numéraire-dependent option pricing formula, nor the PDE approach deliver unique arbitrage-free option prices. They rather depend on the particular choice of λ_2 .

Change of Measure

• Under \mathbb{Q} , generated by $(\lambda_1 \ \lambda_2)$, the model evolves according to

$$\begin{split} \mathrm{d}S_t &= S_t[r\mathrm{d}t + \sqrt{\nu_t}\mathrm{d}W_{1,t}^{\mathbb{Q}}] \\ \mathrm{d}\nu_t &= \left[\kappa(\theta - \nu_t) - \underbrace{\lambda_{1,t}\sigma\rho\sqrt{\nu_t}}_{=(\mu-r)\sigma\rho} - \underbrace{\lambda_{2,t}\sigma\sqrt{\nu_t}\sqrt{1-\rho^2}}_{=2,t}\right]\mathrm{d}t \\ &+ \sigma\sqrt{\nu_t}\mathrm{d}(\rho W_{1,t}^{\mathbb{Q}} + \sqrt{1-\rho^2}W_{2,t}^{\mathbb{Q}}) \end{split}$$

- Heston (1993) chooses $\lambda_{2,t}$ such that the drift adjustment is proportional to ν_t , i.e., $\lambda \nu_t$ for $\lambda \in \mathbb{R}$
- Therefore,

$$\mathrm{d}\nu_t = \left[\kappa(\theta - \nu_t) - \lambda \nu_t\right] \mathrm{d}t + \sigma \sqrt{\nu_t} \mathrm{d}(\rho W_{1,t}^\mathbb{Q} + \sqrt{1 - \rho^2} W_{2,t}^\mathbb{Q})$$

and there is a closed-form solution for the call option price for every particular choice of $\lambda \in \mathbb{R}$.

Problem: Set up the Pricing PDE

Calibration vs. Estimation

- Crucial Question: How do we determine the market price of risk?
- Calibration and estimation are two ways of determining parameters in a financial model. The difference is:
 - estimation uses methods of statistics/econometrics to infer parameter values from observed *historical* behavior of asset prices and other relevant quantities
 - calibration sets parameter values so as to generate a close match between derivative prices obtained from the model and prices observed currently in the market.
- Estimation comes with standard errors, significance tests, and so on; analogous quantities that may serve as warning signals are not produced by calibration.
- Estimation works with models that are written under \mathbb{P} (real-world measure); calibration can be applied to models that are written under \mathbb{Q}_N (martingale measure corresponding to a chosen numéraire).

In our Situation

ullet Estimation helps us to figure out the parameters under ${\mathbb P}$

$$\begin{split} \mathrm{d}M_t &= M_t r \mathrm{d}t \\ \mathrm{d}S_t &= S_t [\mu \mathrm{d}t + \sqrt{\nu_t} \mathrm{d}W_{1,t}] \\ \mathrm{d}\nu_t &= \kappa (\theta - \nu_t) \mathrm{d}t + \sigma \sqrt{\nu_t} \mathrm{d}(\rho W_{1,t} + \sqrt{1 - \rho^2} W_{2,t}) \end{split}$$

- However, for pricing purposes, we need the Q-dynamics.
- **Idea:** Calibrate the relevant parameters under \mathbb{Q} (in particular λ) such that the model closely matches the prices of plain vanilla options.
- Use the calibrated parameters to determine arbitrage-free prices of more complicated products.

Recipe for Calibration

• Determine a closed-form solution for option prices that depends on the particular choice of the market price of risk, i.e., an expression

$$C(S_0, \nu_0, \Theta, K, T)$$

for a strike price K, time horizon T, and parameter set $\Theta = (\kappa, \theta, \sigma, \rho, \lambda)$.

- Observe market prices of options $C_1(K_1, T_1), \ldots C_N(K_N, T_N)$ for various combinations of K and T.
- Solve the following minimization problem for a set of weights w:

$$\Theta^* = \arg\min_{\Theta} \sum_{i=1}^{N} w_i \big[C(S_0, \Theta, K_i, T_i) - C_i(K_i, T_i) \big]^2$$

• This shows a potential conflict between estimation and calibration: time series information can be used to determine the parameters κ and σ in the model under \mathbb{Q} , and these values might differ from those obtained by calibration.

Table of Contents

- Black Scholes Revisited
 - The Fastest Way to the Black-Scholes Formula
 - Example: Double-barrier Option: Pricing by the BSPDE
- Option Pricing in Incomplete Markets
 - The Heston Model
 - Parameter Choice: Calibration vs. Estimation
- 10 Models with Dividends
 - The Black-Scholes Setting
 - General Setting

Costs and Dividends

- In the theory we assume that assets are self-financing, but, in reality, stocks often generate dividends, and commodities typically bring storage costs.
- Strategy: specify where the dividends go (or where the costs are financed from). In this way, the given asset becomes part of a self-financing portfolio. Then derive the distribution of the asset under a suitable EMM.
- ullet To illustrate, suppose that S_t is the price at time t of a dividend-paying stock, and assume for convenience that dividend is paid continuously at a fixed rate, as a percentage of the stock price. We show two implementations of the strategy above.

Motivation from Discrete Time

Usual BS model:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
$$dM_t = rM_t dt$$

but now suppose that the stock pays continuously a fixed-percentage dividend, i.e., the dividend received from one unit of the stock during the instantaneous interval from t to $t+\mathrm{d}t$ is $qS_t\mathrm{d}t$ where q is a constant.

• We can choose to re-invest the dividends into the stock. Let V_t be the value at time t of the portfolio that is created in this way. We have for small Δt :

$$V_{t+\Delta t} = V_t + \frac{V_t}{S_t} (S_{t+\Delta t} - S_t) + \frac{V_t}{S_t} q S_t \Delta t.$$

Dividends in Continuous Time

• In continuous time:

$$dV_t = \frac{V_t}{S_t} (dS_t + qS_t dt) = (\mu + q)V_t dt + \sigma V_t dW_t.$$

• The portfolio V_t is self-financing, so under \mathbb{Q} :

$$dV_t = rV_t dt + \sigma V_t dW_t^{\mathbb{Q}}.$$

- From $dV_t = (V_t/S_t)(dS_t + qS_t dt)$ it follows that $dS_t = (S_t/V_t)(dV_t qV_t dt)$.
- Therefore

$$dS_t = (r - q)S_t dt + \sigma S_t dW_t^{\mathbb{Q}}.$$

This allows us to price options that are stated in terms of S_t .

Alternative Approach

- Alternative approach: assume that the dividends are placed in an savings account *A*.
- We have for small time interval of length Δt :

$$A_{t+\Delta t} = A_t + rA_t\Delta t + qS_t\Delta t$$

so that $dA_t = (rA_t + qS_t) dt$.

• The portfolio $V_t := S_t + A_t$ is self-financing. So, under \mathbb{Q} ,

$$dV_t = rV_t dt + \sigma S_t dW_t^{\mathbb{Q}}.$$

• From $dV_t = dS_t + dA_t$ it follows that $dS_t = dV_t - dA_t$.

Alternative Approach (cont'd)

• Therefore.

$$dS_t = rV_t dt + \sigma S_t dW_t^{\mathbb{Q}} - (rA_t + qS_t) dt$$

$$= r(S_t + A_t) dt + \sigma S_t dW_t^{\mathbb{Q}} - (rA_t + qS_t) dt$$

$$= (r - q)S_t dt + \sigma S_t dW_t^{\mathbb{Q}}.$$

We find the same SDE for S_t under \mathbb{Q} as was found on the basis of the reinvestment strategy.

ullet The pricing formula for a call option written on S_t becomes

$$egin{align} C_0 &= e^{-qT}S_0(d_1) - e^{-rT}K(d_2) \ \ d_1 &= rac{\log(S_0/K) + (r-q+rac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\,, \qquad d_2 &= d_1 - \sigma\sqrt{T}. \end{align}$$

General Setting

Consider an extension of the generic state space model

$$dX_t = \mu_X(t, X_t) dt + \sigma_X(t, X_t) dW_t$$

$$Y_t = \pi_Y(t, X_t).$$

by introducing an m-dimensional dividend process $D_t = D(t, X_t)$ representing the cumulative dividends of the m assets.

- dD_t represents the dividends at time t.
- The gains process is defined as

$$G_t = Y_t + D_t$$

ullet A process ϕ is called a self-financing trading strategy if

$$egin{aligned} V_t = \phi_t' Y_t, & \quad \mathsf{d} V_t = \phi_t' \mathsf{d} G_t \ & = \phi_t' \mathsf{d} Y_t + \phi_t' \mathsf{d} D_t \end{aligned}$$

Discounted Gain Process

- Given a pricing kernel K, we define the deflated price process by $Y^K = KY$
- What is an appropriate definition for the deflated gains process?
 With dividends, it does not make sense to define the deflated gains process by G^K = KY + KD, since it does not take the timing and reinvestment of the dividends into account.

• Instead, we define the deflated gains process G^K s.t. deflated wealth $V^K = KV^\phi$ generated by self-financing trading strategy ϕ equals wealth generated by this trading strategy and deflated prices and gains:

$$V^K = \phi'(KY), \qquad dV^K = \phi'dG^K, \qquad G^K \text{ is a \mathbb{P}-martingale}$$

• We already know $Y^K = KY$. What's about D^K ?

Dividend Dynamics

• Easiest Formulation (dividends are locally risk-free):

$$dD_t = \mu_D(t, X_t)dt$$

Then, the discounted dividends follow (check!):

$$dD_t^K = K_t \mu_D(t, X_t) dt$$

 General Case (dividends my be driven by systematic or idiosyncratic shocks):

$$dD_t = \mu_D(t, X_t)dt + \sigma_D(t, X_t)dW_t$$

Then, the discounted dividends follow (check!):

$$dD_t^K = \left[K_t \mu_D(t, X_t) + \sigma_K' \sigma_D \right] dt + K_t \sigma_D' dW_t$$

First FTAP with Dividends

- Given: joint process of asset prices $(Y_t)_{t\geq 0}$, cumulative dividends $(D_t)_{t\geq 0}$
- The deflated gains process G^K is given by

$$dG^K = d(KY) + dD_t^K.$$

First Fundamental Theorem of Asset Pricing

The following are equivalent:

- The market is free of arbitrage.
- ② There is a positive adapted scalar process $(K_t)_{t\geq 0}$ such that the process $(G_t^K)_{t\geq 0}$ is a martingale under \mathbb{P} .

Pricing with Dividends

- By definition $K_0 = 1$, and $D_0 = 0$.
- FTAP with dividends implies:

$$G_t^K = \mathbb{E}_t[G_T^K] \qquad \Longleftrightarrow \qquad Y_t = Y_t^K + D_t^K = \mathbb{E}_t[Y_TK_T + D_T^K],$$

in particular, $Y_0 = \mathbb{E}[Y_T K_T + D_T^K]$

• **Remark:** The FTAP works for other numéraire-measure-combinations as well. In particular, for $N_t = M_t$:

$$oxed{Y_t = \mathbb{E}_t^{\mathbb{Q}} \Big[rac{Y_T}{M_T} + \int_t^T rac{1}{M_u} \mathsf{d}D_u \Big]}$$

• If dividends follow the dynamics $dD_t = \mu_D(t, X_t) dt$, then

$$Y_t = \mathbb{E}_t^{\mathbb{Q}} \Big[Y_T e^{-\int_t^T r_s ds} + \int_t^T e^{-\int_t^u r_s ds} \mu_D(u, X_u) du \Big],$$

i.e., prices have a Feynman-Kac representation.