Part II

Generic State Space Model

Table of Contents

-

(3) Framework

4 No Arbitrage and the First FTAP
(5) The Numéraire-dependent Pricing Formula
(6) Replication and the Second FTAP
(7) The PDE Approach

Generic State Space Model

- We consider a general framework with n state variables and m assets
- The state variables may include asset prices (in this case $X_{i}=Y_{i}$) such as
- Bonds
- Commodities
- Money market account
- Stocks
- ...
- But they can also model non-tradable financial or economic factors, such as
- Interest rates
- Volatility
- Expected rate of return
- Inflation
- GDP growth
- ...
- The model is driven by k risk sources (Brownian motions).

Generic State Space Model

- General continuous-time financial market model driven by Brownian motion:

Generic State Space Model

$$
\begin{aligned}
\mathrm{d} X_{t} & =\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
Y_{t} & =\pi_{Y}\left(t, X_{t}\right)
\end{aligned}
$$

- Notation:
W_{t} : k-dimensional standard Brownian motion
X_{t} : n-dimensional Markov process of state variables
$Y_{t}: m$-dimensional process of asset prices at time t
$\mu_{X}\left(t, X_{t}\right)$: vector of length n
$\sigma_{X}\left(t, X_{t}\right)$: matrix of size $n \times k$
$\pi_{Y}\left(t, X_{t}\right)$: vector of length m
t : time, measured in years

Asset Dynamics

- Given the functions μ_{X}, σ_{X}, and π_{Y}, we can determine the asset dynamics $\mathrm{d} Y$ on the basis of Itô's lemma.
- Fix a component $C=Y_{i}$ ("claim") for some $i=1, \ldots, m$ from the vector of asset prices $Y=\left(Y_{1}, \ldots, Y_{m}\right)^{\prime}$.
- Define the real function $\pi_{C}=\pi_{Y, i}$. Itô's lemma yields (see slide 31).

$$
\mathrm{d} C_{t}=\mu_{C}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{C}\left(t, X_{t}\right) \mathrm{d} W_{t}
$$

with

$$
\begin{aligned}
\mu_{C} & =\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot \mu_{X}+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X} \sigma_{X}^{\prime}\right) \\
& =\frac{\partial \pi_{C}}{\partial t}+\sum_{i=1}^{n} \frac{\partial \pi_{C}}{\partial x_{i}} \mu_{X, i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{\ell=1}^{k} \frac{\partial^{2} \pi_{C}}{\partial x_{i} \partial x_{j}} \sigma_{X, i, \ell} \sigma_{X, j, \ell} \\
\sigma_{C} & =\nabla \pi_{C} \sigma_{X} .
\end{aligned}
$$

Example: Black-Scholes Model

- Two assets: money market account M and stock S

$$
\begin{aligned}
\mathrm{d} S_{t} & =S_{t}\left[\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right] \\
\mathrm{d} M_{t} & =M_{t} r \mathrm{~d} t
\end{aligned}
$$

- This can be written in standard state space form by letting the state variable $=$ asset prices be of dimension $n=m=2$, with components S_{t} and M_{t}.
- There is only one source of uncertainty $(k=1)$.
- The vector functions μ_{X}, σ_{X}, and π_{Y} are given by

$$
\begin{gathered}
\mu_{X}\left(t, S_{t}, M_{t}\right)=\left[\begin{array}{l}
\mu S_{t} \\
r M_{t}
\end{array}\right], \quad \sigma_{X}\left(t, S_{t}, M_{t}\right)=\left[\begin{array}{c}
\sigma S_{t} \\
0
\end{array}\right] \\
\pi_{Y}\left(t, S_{t}, M_{t}\right)=\left[\begin{array}{c}
S_{t} \\
M_{t}
\end{array}\right]
\end{gathered}
$$

Stochastic Interest Rates: Vasicek Model / CIR I

- A Vasicek process or Ornstein-Uhlenbeck process is a process of the form

$$
\mathrm{d} X_{t}=a\left(b-X_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} .
$$

- Properties: X_{t} fluctuates around the mean-reversion level b. The parameter a determines the mean-reversion speed. We will see later on that this process is normally distributed.
- Vasicek processes are commonly used to model rates such as interest rates, inflation rates, exchange rates, (expected) growth rates, etc.
- The Vasicek process has the (dis-)advantage that it can take positive and negative values.
- A prominent alternative is the Cox-Ingersoll-Ross process

$$
\mathrm{d} X_{t}=a\left(b-X_{t}\right) \mathrm{d} t+\sigma \sqrt{X_{t}} \mathrm{~d} W_{t}
$$

which can only take positive values, but has a very complicated distribution (non-central χ^{2}).

Stochastic Interest Rates: Vasicek / CIR Model

 School of Economics and Management
Model with Stochastic Interest Rates

- The short rate follows a Vasicek process:

$$
\begin{aligned}
\mathrm{d} S_{t} & =\mu S_{t} \mathrm{~d} t+\sigma_{S} S_{t} \mathrm{~d} W_{1, t} \\
\mathrm{~d} M_{t} & =r_{t} M_{t} \mathrm{~d} t \\
\mathrm{~d} r_{t} & =a\left(b-r_{t}\right) \mathrm{d} t+\sigma_{r} \mathrm{~d}\left(\rho W_{1, t}+\sqrt{1-\rho^{2}} W_{2, t}\right)
\end{aligned}
$$

- $n=3$ state variables, S_{t}, M_{t}, r_{t}, along with $k=2$ sources of risk, and $m=2$ assets S_{t}, M_{t}. Vector/matrix functions:

$$
\begin{gathered}
\mu_{X}\left(t, S_{t}, M_{t}, r_{t}\right)=\left[\begin{array}{c}
\mu S_{t} \\
r_{t} M_{t} \\
a\left(b-r_{t}\right)
\end{array}\right] \\
\sigma_{X}\left(t, S_{t}, M_{t}, r_{t}\right)=\left[\begin{array}{cc}
\sigma_{S} S_{t} & 0 \\
0 & 0 \\
\sigma_{r} \rho & \sigma_{r} \sqrt{1-\rho^{2}}
\end{array}\right], \pi_{Y}\left(t, S_{t}, M_{t}, r_{t}\right)=\left[\begin{array}{c}
S_{t} \\
M_{t}
\end{array}\right] .
\end{gathered}
$$

Positive Prices

- If the asset i has a positive price, i.e., π_{C} maps to the positive real numbers, we can rewrite

$$
\begin{aligned}
\mathrm{d} C_{t} & =\mu_{C}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{C}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
& =C_{t}\left[\widetilde{\mu}_{C}\left(t, X_{t}\right) \mathrm{d} t+\widetilde{\sigma}_{C}\left(t, X_{t}\right) \mathrm{d} W_{t}\right]
\end{aligned}
$$

with $\widetilde{\mu}_{C}=\frac{\mu_{C}}{C}, \widetilde{\sigma}_{C}=\frac{\sigma_{C}}{C}$.

- Applying Itô's lemma to determine log return:

$$
\begin{aligned}
\mathrm{d} \log (C) & =C^{-1} \mathrm{~d} C+\frac{1}{2}\left(-C^{-2}\right) \mathrm{d}[C] \\
& =\widetilde{\mu}_{C} \mathrm{~d} t+\widetilde{\sigma}_{C} \mathrm{~d} W_{t}-\frac{1}{2} \widetilde{\sigma}_{C} \widetilde{\sigma}_{C}^{\prime} \mathrm{d} t
\end{aligned}
$$

- Consequently,

$$
\begin{aligned}
\log \left(C_{t}\right) & =\log \left(C_{0}\right)+\int_{0}^{t}\left(\widetilde{\mu}_{C}-\frac{1}{2} \widetilde{\sigma}_{C} \widetilde{\sigma}_{C}^{\prime}\right) \mathrm{d} s+\int_{0}^{t} \widetilde{\sigma}_{C} \mathrm{~d} W_{s} \\
\Longrightarrow \quad C_{t} & =C_{0} \exp \left(\int_{0}^{t}\left(\widetilde{\mu}_{C}-\frac{1}{2} \widetilde{\sigma}_{C} \widetilde{\sigma}_{C}^{\prime}\right) \mathrm{d} s+\int_{0}^{t} \widetilde{\sigma}_{C} \mathrm{~d} W_{s}\right)>0
\end{aligned}
$$

Self-financing Portfolios

- ϕ_{t} is the vector of number of units of assets held at time t.
- Portfolio value generated by the portfolio strategy ϕ :

$$
V_{t}=\phi_{t}^{\prime} Y_{t}
$$

- A portfolio strategy ϕ is self-financing if portfolio rebalancing neither generates nor destroys money, i.e.,

$$
\mathrm{d} V_{t}=\phi_{t}^{\prime} \mathrm{d} Y_{t}
$$

or equivalently, $V_{T}=V_{0}+\int_{0}^{T} \phi_{t}^{\prime} \mathrm{d} Y_{t}$. This is the self-financing condition for continuous trading.

Table of Contents

(3) Framework
(4) No Arbitrage and the First FTAP
(5) The Numéraire-dependent Pricing Formula
(6) Replication and the Second FTAP

(7) The PDE Approach

Checking if a Market is Free of Arbitrage

- We consider our generic state space market model

$$
\begin{aligned}
\mathrm{d} X_{t} & =\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
Y_{t} & =\pi_{Y}\left(t, X_{t}\right)
\end{aligned}
$$

- A natural question is whether there is an easy-to-check criterion on whether a market satisfies "nice" economic properties.
- Two fundamental economic properties are
- absence of arbitrage ("no free profits without risk")
- completeness ("all risks are hedgeble")
- Since the model is formulated in terms of the functions $\mu_{X}\left(t, X_{t}\right)$, $\sigma_{X}\left(t, X_{t}\right)$, and $\pi_{Y}\left(t, X_{t}\right)$, it should be possible to relate these conditions to these functions.

Arbitrage Opportunity

Definition (Arbitrage Opportunity)

(1) A self-financing trading strategy ϕ is said to be an arbitrage opportunity if the value V generated by ϕ satisfies the following conditions:

Arb 1.) $\quad V_{0}=0 \quad$ Zero net investment
Arb 2.) $\mathbb{P}\left(V_{T} \geq 0\right)=1 \quad$ Riskless investment
Arb 3.) $\mathbb{P}\left(V_{T}>0\right)>0 \quad$ Chance of making profits
(2) A market model is called free of arbitrage if no arbitrage opportunities exist.
"An arbitrage opportunity makes something out of nothing."

Working with a Numéraire

- Asset prices are expressed in terms of a chosen currency (euro, dollar, ...). For theoretical purposes it is often useful to work with a numéraire, and to consider relative asset price processes (i.e., relative to the numéraire).
- A numéraire N_{t} is any asset (or more generally a self-financing portfolio) whose price is always strictly positive, i.e., it has a representation

$$
\begin{aligned}
\mathrm{d} N_{t} & =\mu_{N}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{N}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
& =N_{t}\left[\widetilde{\mu}_{N}\left(t, X_{t}\right) \mathrm{d} t+\widetilde{\sigma}_{N}\left(t, X_{t}\right) \mathrm{d} W_{t}\right]
\end{aligned}
$$

- A portfolio strategy ϕ_{t} is self-financing if and only if $\mathrm{d}\left(V_{t} / N_{t}\right)=\phi_{t}^{\prime} \mathrm{d}\left(Y_{t} / N_{t}\right)$. The relative value process is then given by

$$
\frac{V_{t}}{N_{t}}=\frac{V_{0}}{N_{0}}+\int_{0}^{t} \phi_{s}^{\prime} \mathrm{d}\left(\frac{Y_{s}}{N_{s}}\right)
$$

First Fundamental Theorem of Asset Pricing

- Given: joint process of asset prices $\left(Y_{t}\right)_{t \geq 0}$, and a numéraire $\left(N_{t}\right)_{t \geq 0}$.

First Fundamental Theorem of Asset Pricing

The following are equivalent:
(1) The market is free of arbitrage.
(2) There is a probability measure $\mathbb{Q}_{N} \sim \mathbb{P}$ such that $\left(Y_{t} / N_{t}\right)_{t \geq 0}$ is a martingale under \mathbb{Q}_{N}.

- The measure \mathbb{Q}_{N} is called an equivalent martingale measure (EMM) that corresponds to the numéraire N.
- The direction $(2) \Longrightarrow(1)$ can be proven easily. However, it is a hard task to prove $(1) \Longrightarrow(2)$, because one has to construct an EMM (see Delbean and Schachermayer 2006, The Mathematics of Arbitrage).

Proof of the Easy Part

Proof of the Easy Part (cont'd)

Criterion for Arbitrage-free Markets

Proposition (No Arbitrage Criterion)

The generic state space model

$$
\begin{aligned}
& \mathrm{d} X_{t}=\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad Y_{t}=\pi_{Y}\left(t, X_{t}\right) \\
& \mathrm{d} Y_{t}=\mu_{Y}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{Y}\left(t, X_{t}\right) \mathrm{d} W_{t}
\end{aligned}
$$

is free of arbitrage if and only if for all t and x there exists a scalar $r(t, x) \in \mathbb{R}$ and a vector $\lambda(t, x) \in \mathbb{R}^{k}$ such that

$$
\mu_{Y}(t, x)-r(t, x) \pi_{Y}(t, x)=\sigma_{Y}(t, x) \lambda(t, x)
$$

Another way to write the equation above:

$$
\underbrace{\left[\begin{array}{ll}
\sigma_{Y} & \pi_{Y}
\end{array}\right]}_{\in \mathbb{R}^{m \times(k+1)}} \underbrace{\left[\begin{array}{c}
\lambda \\
r
\end{array}\right]}_{\in \mathbb{R}^{k+1}}=\underbrace{\mu_{Y}}_{\in \mathbb{R}^{m}}
$$

Typical Situations

- A sufficient condition for absence of arbitrage is that the matrix $\left[\sigma_{Y}(t, x) \pi_{Y}(t, x)\right]$ is invertible for all t and x. Under this condition, the solution is moreover unique.
- The size of the matrix $\left[\sigma_{Y}(t, x) \pi_{Y}(t, x)\right]$ is $m \times(k+1)$, where m is the number of assets and k is the number of Brownian motions in the model. So, for the matrix to be invertible, we need

$$
m=k+1
$$

(the number of assets exceeds the number of risk factors by one).

- If $m<k+1$, typically absence of arbitrage holds, but the solution is not unique. If $m>k+1$, then special conditions must be satisfied to prevent arbitrage.

Money Market Account I

- Notice that on every arbitrage-free market, there exists a short-term interest rate $r_{t}=r\left(t, X_{t}\right)$ (short rate).
- The natural numéraire (the one that is used if there is no specific reason to choose another one) is the money market account which is locally risk-free and defined by

$$
\mathrm{d} M_{t}=r_{t} M_{t} \mathrm{~d} t
$$

- The money market account evolves according to

$$
M_{t}=M_{0} \exp \left(\int_{0}^{t} r_{s} \mathrm{~d} s\right)
$$

- Oftentimes, M is already specified in the dynamics of Y.

Money Market Account II

- If the market is free of arbitrage, but M is not a component of Y, one can equip the market with a money market account by enlarging the price vector $\tilde{\pi}_{Y}=\left[\begin{array}{ll}\pi_{Y} & M\end{array}\right]^{\prime}$.
- The extended market is free of arbitrage and pins down the term r in the NA criterion. The following equation is trivially satisfied:

$$
\left[\begin{array}{ll}
\sigma_{M} & \pi_{M}
\end{array}\right]\left[\begin{array}{l}
\lambda \\
r
\end{array}\right]=\mu_{M}
$$

- If the solution for r is unique (but not necessarily the solution for λ), one can indeed construct the money market account, i.e., construct a self-financing portfolio s.t. $\phi^{\prime} Y=M$.
- Moral: Every arbitrage-free market can be equipped with an MMA such that the extended market is still free of arbitrage. Thus, the MMA can be used as a numéraire in any arbitrage-free market.

Market Price of Risk and Risk-neutral Measure

- The process $\lambda_{t}=\lambda\left(t, X_{t}\right)$ is called the market price of risk.
- Given the market price of risk, we can apply Girsanov's theorem and define the Girsanov kernel

$$
\theta_{t}=\mathcal{E}(\lambda)_{t}=\exp \left(-\int_{0}^{t} \lambda_{s}^{\prime} \mathrm{d} W_{s}-\frac{1}{2} \int_{0}^{t}\left\|\lambda_{s}\right\|^{2} \mathrm{~d} s\right)
$$

- Then the process $W^{\mathbb{Q}}$ with

$$
\mathrm{d} W_{t}^{\mathbb{Q}}=\lambda_{t} \mathrm{~d} t+\mathrm{d} W_{t}
$$

is a k-dimensional Brownian motion under $\mathbb{Q} \sim \mathbb{P}$.

- Remark: This measure $\mathbb{Q}=\mathbb{Q}_{M}$ is an equivalent martingale measure corresponding to the money market account as numéraire (see slide 72), a so-called risk-neutral probability measure.
- Remark: Under \mathbb{Q} every traded asset has a drift rate of $r_{t}=r\left(t, X_{t}\right)$

Proof of the NA Criterion

- The condition for absence of arbitrage in the generic state space model can be written briefly as: there must exist $r=r(t, x)$ and $\lambda=\lambda(t, x)$ such that

$$
\mu_{Y}-r \pi_{Y}=\sigma_{Y} \lambda
$$

- We will derive this from the First Fundamental Theorem of Asset Pricing. The following concepts will be used:
- numéraire
- money market account
- equivalent martingale measure (EMM)

Proof of the NA Criterion

- Let \mathbb{Q}_{N} denote a probability measure defined by the RN process λ_{N}. \mathbb{Q}_{N} is an EMM if and only if the relative asset price process Y_{t} / N_{t} is a \mathbb{Q}_{N}-martingale, i.e., its drift rate under \mathbb{Q}_{N} is zero.
- The relative asset price process follows

$$
\mathrm{d}(Y / N)=\mu_{Y / N} \mathrm{~d} t+\sigma_{Y / N} \mathrm{~d} W
$$

- According to Girsanov's Theorem

$$
\mathrm{d} \widetilde{W}_{t}=\lambda_{N}\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

is a Brownian motion under \mathbb{Q}_{N}. Therefore,

$$
\mathrm{d}(Y / N)=\mu_{Y / N} \mathrm{~d} t+\sigma_{Y / N}\left(\mathrm{~d} \widetilde{W}_{t}-\lambda_{N} \mathrm{~d} t\right)
$$

- Thus, Y / N is a \mathbb{Q}_{N}-martingale if and only if $\mu_{Y / N}=\sigma_{Y / N} \lambda_{N}$.

Proof of the NA Criterion (cont'd)

- Choose $N_{t}=M_{t}$ (money market account) and write $\lambda_{M}=\lambda$.
- From $\mathrm{d} M_{t}=r_{t} M_{t} \mathrm{~d} t$ it follows that

$$
\mathrm{d}\left(M_{t}^{-1}\right)=-r_{t} M_{t}^{-1} \mathrm{~d} t
$$

- Therefore by the stochastic product rule,

$$
\mathrm{d}(Y / M)=Y \mathrm{~d}\left(M^{-1}\right)+M^{-1} \mathrm{~d} Y=M^{-1}(\mathrm{~d} Y-r Y \mathrm{~d} t)
$$

so that

$$
\mu_{Y / M}=M^{-1}\left(\mu_{Y}-r \pi_{Y}\right), \quad \sigma_{Y / M}=M^{-1} \sigma_{Y}
$$

- Because M^{-1} is never zero, the condition $\mu_{Y / M}=\sigma_{Y / M} \lambda$ is equivalent to the no-arbitrage criterion

$$
\mu_{Y}-r \pi_{Y}=\sigma_{Y} \lambda
$$

Example: Black-Scholes Model

- Asset dynamics

$$
\mathrm{d} S_{t}=\mu S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}, \quad \mathrm{~d} M_{t}=r M_{t} \mathrm{~d} t
$$

- The no-arbitrage criterion $\mu_{Y}-r \pi_{Y}=\sigma_{Y} \lambda$ becomes

$$
\left[\begin{array}{l}
\mu S \\
r M
\end{array}\right]-r\left[\begin{array}{c}
S \\
M
\end{array}\right]=\left[\begin{array}{c}
\sigma S \\
0
\end{array}\right] \lambda
$$

where the quantities that are to be determined are indicated in blue.

- There is a (unique) solution, i.e., the BS model is free of arbitrage (and complete):

$$
r=r, \quad \lambda=\frac{\mu-r}{\sigma}
$$

- The \mathbb{Q}-Brownian motion $W^{\mathbb{Q}}$ is given by $W_{t}^{\mathbb{Q}}=\lambda t+W_{t}$. Hence, the dynamics under \mathbb{Q} are

$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}}, \quad \mathrm{d} M_{t}=r M_{t} \mathrm{~d} t
$$

Example: Model with Stochastic Interest Rates

- The short rate follows the Vasicek model:

$$
\begin{aligned}
\mathrm{d} M_{t} & =r_{t} M_{t} \mathrm{~d} t \\
\mathrm{~d} S_{t} & =\mu S_{t} \mathrm{~d} t+\sigma_{S} S_{t} \mathrm{~d} W_{1, t} \\
\mathrm{~d} r_{t} & =a\left(b-r_{t}\right) \mathrm{d} t+\sigma_{r} \mathrm{~d}\left(\rho W_{1, t}+\sqrt{1-\rho^{2}} W_{2, t}\right)
\end{aligned}
$$

- No-arbitrage criterion

$$
\left[\begin{array}{c}
\mu S \\
r M
\end{array}\right]-r\left[\begin{array}{c}
S \\
M
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{S} S & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]
$$

- There is a (non-unique) solution. The model is free of arbitrage.
- The solution is non-unique because λ_{2} is arbitrary. The quantities r and λ_{1} are defined uniquely by absence of arbitrage.

Problem: Working with a Numéraire

(a) For a given numéraire N, derive the dynamics of Y / N.
(b) Show how the result from (a) simplifies if one chooses $N=M$.

Solution:

Problem: Working with a Numéraire

Table of Contents

4 No Arbitrage and the First FTAP
(5) The Numéraire-dependent Pricing Formula

6 Replication and the Second FTAP
(7) The PDE Approach

The Pricing Problem

- Let an arbitrage-free model be given in the generic state space form

$$
\begin{aligned}
& \mathrm{d} X_{t}=\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t}, \\
& \mathrm{~d} Y_{t}=\mu_{Y}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{Y}\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad Y_{t}=\pi_{Y}\left(t, X_{t}\right)
\end{aligned}
$$

s.t.

$$
\mu_{Y}\left(t, X_{t}\right)-r\left(t, X_{t}\right) \pi_{Y}\left(t, X_{t}\right)=\sigma_{Y}\left(t, X_{t}\right) \lambda\left(t, X_{t}\right)
$$

- Suppose now that a new asset is introduced, for instance a contract that will produce a state-dependent payoff at a given time $T>0$. Pricing on the basis of absence of arbitrage means: the new asset should be priced such that no arbitrage is introduced.
- We want to turn this principle into a pricing formula.

Pricing Formula

- If there is an EMM \mathbb{Q}_{N}, for a given numéraire N_{t}, the relative price of any asset must be a martingale under \mathbb{Q}_{N}. By the martingale property, we therefore have:

Numéraire-dependent pricing formula

Let C_{T} denote the terminal payoff of a contingent claim that matures at time T. For every $\mathrm{EMM} \mathbb{Q}_{N}$ for a given numéraire N_{t}, an arbitrage-free price at time t is given by

$$
C_{t}=N_{t} E_{t}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]
$$

- This can be used as a pricing formula for derivative contracts.
- Crucial question: When is the arbitrage-free price of the derivative unique?

Unique Asset Prices

- To have uniquely defined prices of derivatives, the equation

$$
\mu_{Y}(t, x)-r(t, x) \pi_{Y}(t, x)=\sigma_{Y}(t, x) \lambda(t, x)
$$

needs to have a unique solution $(r(t, x), \lambda(t, x))$. Then the corresponding EMM and the corresponding SDF are uniquely determined.

- One can show that the solution is unique if and only if the matrix $\left[\begin{array}{ll}\pi_{Y} & \sigma_{Y}\end{array}\right]$ has full column rank for all (t, x).
- Sufficient condition: the matrix $\left[\begin{array}{ll}\pi_{Y} & \sigma_{Y}\end{array}\right]$ is invertible (requires $m=k+1$).
- Necessary condition: $m \geq k+1$
- In arbitrage-free markets with unique EMM \mathbb{Q}_{N}, the arbitrage-free price $C_{t}=N_{t} E_{t}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]$ is uniquely determined.
- We will see later on that uniqueness of the EMM corresponds to an important economic property: market completeness.

Verification of Absence of Arbitrage

- The process C_{t} is defined by

$$
C_{t}=N_{t} E_{t}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]
$$

where C_{T} is a given random variable.

- In applications, the terminal payoff of the derivative, C_{T}, is a function of the state vector at time $T: C_{T}=F\left(X_{T}\right)$.
- To ensure that no arbitrage is introduced by the price process C_{t}, we need to verify that the process $\left(C_{t} / N_{t}\right)_{t \geq 0}$ is a martingale; i.e., the martingale property holds for any s and t with $s<t$, not just for t and T.
- This follows from the tower law of conditional expectations:

$$
E_{s}^{\mathbb{Q}_{N}}\left[\frac{C_{t}}{N_{t}}\right]=E_{s}^{\mathbb{Q}_{N}}\left[E_{t}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]\right]=E_{s}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]=\frac{C_{s}}{N_{s}} .
$$

Money Market Account as a Numéraire

- In principle, every self-financing portfolio which generates positive wealth can act as a numéraire.
- However, there are several commonly used choices:
- Money market account
- Stock
- Numéraire portfolio
- ...
- Using the money market account as a numéraire, the pricing formula becomes

$$
C_{t}=B_{t} E_{t}^{\mathbb{Q}}\left[\frac{C_{T}}{B_{T}}\right]=E_{t}^{\mathbb{Q}}\left[C_{T} \frac{B_{t}}{B_{T}}\right]=E_{t}^{\mathbb{Q}}\left[C_{T} \mathrm{e}^{-\int_{t}^{T} r_{s} d s}\right]
$$

- We refer to $\mathbb{Q}=\mathbb{Q}_{M}$ as the risk-neutral pricing measure. Under \mathbb{Q}, the agent discounts at the risk-free rate and does not require a risk premium.
- Under \mathbb{Q} every traded asset has an expected return of $r=r\left(t, X_{t}\right)$.

The Numéraire Portfolio

- Natural question: Is there a numéraire N for which $\mathbb{Q}_{N}=\mathbb{P}$?
- In an arbitrage free market driven by Brownian motion, one can show that the answer is positive if one can solve the problem of maximizing expected log-utility from terminal wealth, i.e., if

$$
\max _{\phi} \mathbb{E}\left[\log \left(V_{T}^{\phi}\right)\right]<\infty
$$

- The portfolio ρ that maximizes this optimization problem will be called the log-optimal portfolio or the numéraire portfolio.
- One can show that using the numéraire portfolio as numéraire N, the pricing formula becomes the real-world pricing formula

$$
C_{t}=\mathbb{E}_{t}\left[C_{T} \frac{V_{t}^{\rho}}{V_{T}^{\rho}}\right]
$$

where the expectation is calculated under \mathbb{P}.

Alternative Formulation of the FTAP

- Instead of exploiting an eqivalent martingale measure, it is also very common to make use of a stochastic discount factor (SDF) or pricing kernel.
- A stochastic discount factor K is a positive adapted process with $K_{0}=1$ such that the process $\left(K_{t} Y_{t}\right)$ is a martingale under \mathbb{P}, i.e.,

$$
\mathbb{E}_{t}\left[K_{s} Y_{s}\right]=K_{t} Y_{t}
$$

- One can show that the existence of an EMM is equivalent to the existence of a SDF. Therefore, the FTAP can also be formulated in terms of the SDF:

First Fundamental Theorem of Asset Pricing

The following are equivalent:
(1) The market is free of arbitrage.
(2) There is a stochastic discount factor.

Some Properties of the SDF

- The SDF is a positive adapted process, i.e., it can be written as (see slide 46)

$$
K_{t}=\exp \left(\int_{0}^{t}\left(\widetilde{\mu}_{K}-\frac{1}{2} \widetilde{\sigma}_{K} \widetilde{\sigma}_{K}^{\prime}\right) \mathrm{d} s+\int_{0}^{t} \widetilde{\sigma}_{K} \mathrm{~d} W_{s}\right)
$$

- By definition of the SDF, the process $K M=\left(K_{t} M_{t}\right)_{t \geq 0}$ must be a martingale under \mathbb{P}. It follows from Itô's lemma that

$$
\mathrm{d}(K M)_{t}=K_{t} M_{t}\left[\left(r+\widetilde{\mu}_{K}\right) \mathrm{d} t+\widetilde{\sigma}_{K} \mathrm{~d} W_{t}\right]
$$

where $\widetilde{\sigma}_{K}=-\lambda^{\prime}$. The martingale property implies $\widetilde{\mu}_{K}=-r$.

- The SDF combines the role of discounting at the short rate and the change of measure from \mathbb{P} to \mathbb{Q}.
- It follows that the numéraire portfolio and the pricing kernel are inversely related, i.e., $K_{t}=\frac{1}{V_{t}^{p}}$.

Multiple Payoffs

- A contract may generate payoffs (possible uncertain) at multiple points in time.
- Such a contract can be viewed as a portfolio of options with individual payoff dates. The value of the portfolio is the sum of the values of its constituent parts.
- We get, for a contract with payoffs $\hat{C}_{T_{i}}$ at times $T_{i}(i=1, \ldots, n)$:

$$
C_{0}=N_{0} \sum_{i=1}^{n} E^{\mathbb{Q}_{N}}\left[\frac{\hat{C}_{T_{i}}}{N_{T_{i}}}\right]
$$

- In the special case of constant interest rates, we can take the money market account $M_{t}=e^{r t}$ as the numéraire; then

$$
C_{0}=\sum_{i=1}^{n} e^{-r T_{i}} E^{\mathbb{Q}}\left[\hat{C}_{T_{i}}\right]
$$

- This shows that the NDPF can be seen as a generalized net present value formula.

Table of Contents

4 No Arbitrage and the First FTAP
(5) The Numéraire-dependent Pricing Formula
(6) Replication and the Second FTAP

(7) The PDE Approach

Replication

- So far, we have talked about no-arbitrage and uniqueness of arbitrage-free prices. We now turn to the natural question of whether we can hedge risks and replicate payoffs.
- Let an arbitrage-free model be given in the generic state space form

$$
\begin{aligned}
& \mathrm{d} X_{t}=\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t}, \\
& \mathrm{~d} Y_{t}=\mu_{Y}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{Y}\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad Y_{t}=\pi_{Y}\left(t, X_{t}\right)
\end{aligned}
$$

s.t.

$$
\mu_{Y}\left(t, X_{t}\right)-r\left(t, X_{t}\right) \pi_{Y}\left(t, X_{t}\right)=\sigma_{Y}\left(t, X_{t}\right) \lambda\left(t, X_{t}\right)
$$

- If we want to price a claim, a natural question is whether this derivative can be replicated by a self-financing trading strategy ϕ.

Replication and Complete Market

Definition (Replication Strategy, Completeness)

Let $C_{T}=F\left(X_{T}\right)$ be the terminal payoff of a contingent claim.
(1) A self-financing portfolio strategy ϕ is called a replication strategy or hedging strategy for C if

$$
V_{T}^{\phi}=C_{T}
$$

(2) The claim is said to be attainable if there exists a replication strategy ϕ for this claim.
(3) A market is said to be complete if and only if every claim is attainable.

- A replication strategy is thus a portfolio whose value is, under all circumstances, equal to the value of a specified contingent claim.
- Market completeness is a desirable property but typically not met in reality.

Pricing by Replication

Lemma (Law of One Price)

Suppose the market is arbitrage-free.
(1) For an attainable contingent claim C with hedging strategy ϕ,

$$
C_{0}=V_{0}^{\phi}
$$

is the unique arbitrage-free price, i.e., trading in the primary assets and the derivative does not lead to arbitrage opportunities.
(2) If $V_{T}^{\phi}=V_{T}^{\psi}$ for trading strategies ϕ and ψ, then

$$
V_{0}^{\phi}=V_{0}^{\psi} .
$$

- The proof is trivial and does not rely on specific asset dynamics.

When is Replication Possible?

- We need an easy-to-check criterion when replication is possible.

Second Fundamental Theorem of Asset Pricing

For an arbitrage-free market, the following are equivalent:
(1) The market is complete.
(2) For any given numéraire N, the corresponding $E M M \mathbb{Q}_{N} \sim \mathbb{P}$ is unique.

- We have already seen that for an arbitrage-free market, the EMM is unique if and only if the matrix $\left[\pi_{Y}(t, x) \sigma_{Y}(t, x)\right] \in \mathbb{R}^{m \times(k+1)}$ has full column rank for all (t, x).
- Consequently, if there are enough traded assets ($m>k+1$ is necessary) in the model to determine prices uniquely, then they are also enough to make replication possible. And vice versa.

Examples

- Obviously, the Black Scholes model (see slides 42, 63) is complete since

$$
\left[\begin{array}{ll}
\pi_{Y} & \sigma_{Y}
\end{array}\right]=\left[\begin{array}{cc}
S_{t} & S_{t} \sigma \\
M_{t} & 0
\end{array}\right]
$$

is invertible for every combination of S_{t} and $M_{t}>0$. Besides, there was a unique solution for r and λ, which uniquely determines the change of measure.
\Longrightarrow Pricing by replication is always possible.

- The model with stochastic interest rates of the Vasicek type (see slides 45,64) is incomplete ($m=k=2$), and the EMM is not unique since there is no unique solution for λ_{2}.
\Longrightarrow Pricing by replication is in general impossible.
However, the model can be completed by adding a bond that can be used to hedge interest rate risk (see Chapter 6).

The Replication Recipe

To replicate a payoff at time T given by $C_{T}=F\left(X_{T}\right)$, we follow a four-step procedure:

Step 1. Choose a numéraire N_{t} and determine the function

$$
\pi_{C}(t, x)=\pi_{N}(t, x) E^{\mathbb{Q}_{N}}\left[\left.\frac{F\left(X_{T}\right)}{\pi_{N}\left(T, X_{T}\right)} \right\rvert\, X_{t}=x\right]
$$

Step 2. Compute $\sigma_{C}(t, x)=\nabla \pi_{C}(t, x) \sigma_{X}(t, x)$.
Step 3. Solve for $\phi=\phi(t, x)$ from

$$
\left[\begin{array}{ll}
\sigma_{C} & \pi_{C}
\end{array}\right]=\phi^{\prime}\left[\begin{array}{ll}
\sigma_{Y} & \pi_{Y}
\end{array}\right]
$$

Step 4. Start with initial capital $\pi_{C}\left(0, X_{0}\right)$, and rebalance your portfolio along the trading strategy $\phi_{t}=\phi\left(t, X_{t}\right)$.

Validity of the replication recipe

- To show the validity of the replication recipe, three conditions need to be demonstrated:
(i) the equation $\left[\begin{array}{ll}\sigma_{C} & \pi_{C}\end{array}\right]=\phi^{\prime}\left[\begin{array}{ll}\sigma_{Y} & \pi_{Y}\end{array}\right]$ (where ϕ is the unknown) can be solved
(ii) the portfolio value generated by the trading strategy ϕ at time T is equal to $V_{T}^{\phi}=F\left(X_{T}\right)$.
(iii) the trading strategy $\phi_{t}=\phi\left(t, X_{t}\right)$ is self-financing
- These items will be discussed on the next slides.

Property of the function π_{C}

- We already know that the process defined by $C_{t}=\pi_{C}\left(t, X_{t}\right)$ with

$$
\pi_{C}(t, x)=\pi_{N}(t, x) \mathbb{E}_{t}^{\mathbb{Q}_{N}}\left[\frac{F\left(X_{T}\right)}{\pi_{N}\left(T, X_{T}\right)}\right]
$$

is such that C_{t} / N_{t} is a martingale under \mathbb{Q}_{N}.

- This property is translated into state space terms as follows: let $r=r(t, x)$ and $\lambda=\lambda(t, x)$ be defined as the solution of the equation (NA criterion):

$$
\mu_{Y}-r \pi_{Y}=\sigma_{Y} \lambda
$$

- Then we also have

$$
\mu_{C}-r \pi_{C}=\sigma_{C} \lambda
$$

Requirement (i)

- Market completeness means that the EMM for any given numéraire is uniquely defined, i.e., the equation

$$
\underbrace{\mu_{Y}}_{\in \mathbb{R}^{m}}=\underbrace{\left[\begin{array}{cc}
\sigma_{Y} & \pi_{Y}
\end{array}\right]}_{\in \mathbb{R}^{m \times(k+1)}} \underbrace{\left[\begin{array}{c}
\lambda \\
r
\end{array}\right]}_{\in \mathbb{R}^{k+1}}
$$

has a unique solution $[\lambda r]^{\prime}$.

- In other words, the matrix $\left[\sigma_{Y} \pi_{Y}\right]=\left[\sigma_{Y}(t, x) \pi_{Y}(t, x)\right]$ has rank $k+1$ for all t and x (its columns are linearly independent).
- Because row rank = column rank, this implies that the rows of the matrix span the $(k+1)$-dimensional space. This means that the equation

$$
\left[\begin{array}{ll}
\sigma_{C} & \pi_{C}
\end{array}\right]=\phi^{\prime}\left[\begin{array}{ll}
\sigma_{Y} & \pi_{Y}
\end{array}\right]
$$

has a unique solution ϕ. So requirement (i) is indeed satisfied.

Requirements (ii) and (iii)

- Define the portfolio strategy $\phi_{t}=\phi\left(t, X_{t}\right)$. The corresponding portfolio value is $V_{t}=\phi_{t}^{\prime} Y_{t}$. Because $\phi^{\prime} \pi_{Y}=\pi_{C}$, this implies that $V_{t}=C_{t}$ for all t. In particular, $V_{T}=F\left(X_{T}\right)$ (requirement (ii)).
- Because $\phi^{\prime} \pi_{Y}=\pi_{C}$ and $\phi^{\prime} \sigma_{Y}=\sigma_{C}$, and because $\mu_{Y}=r \pi_{Y}+\sigma_{Y} \lambda$ as well as $\mu_{C}=r \pi_{C}+\sigma_{C} \lambda$, we have

$$
\phi^{\prime} \mu_{Y}=\phi^{\prime}\left(r \pi_{Y}+\sigma_{Y} \lambda\right)=r \phi^{\prime} \pi_{Y}+\phi^{\prime} \sigma_{Y} \lambda=r \pi_{C}+\sigma_{C} \lambda=\mu_{C} .
$$

- Therefore,

$$
\mathrm{d} V=\mu_{C} \mathrm{~d} t+\sigma_{C} \mathrm{~d} W=\phi^{\prime}\left(\mu_{Y} \mathrm{~d} t+\sigma_{Y} \mathrm{~d} W\right)=\phi^{\prime} \mathrm{d} Y
$$

which shows that the proposed portfolio strategy is self-financing (requirement (iii)).

Example: Call Option in BS Model

- BS model under \mathbb{Q} (check!):

$$
\begin{aligned}
\mathrm{d} S_{t} & =r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}} \\
\mathrm{d} M_{t} & =r M_{t} \mathrm{~d} t .
\end{aligned}
$$

- Payoff at time $T: \max \left(S_{T}-K, 0\right)$.
- Step 1: determine the pricing function:

$$
\pi_{C}\left(t, S_{t}\right)=S_{t} \Phi\left(d_{1}\right)-e^{-r(T-t)} K \Phi\left(d_{2}\right)
$$

with

$$
d_{1,2}=\frac{\log \left(S_{t} / K\right)+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

Example: Call Option in BS Model (cont'd)

- Step 2: compute

$$
\sigma_{C}\left(t, S_{t}\right)=\frac{\partial \pi_{C}}{\partial S_{t}}\left(t, S_{t}\right) \sigma S_{t}=\Phi\left(d_{1}\right) \sigma S_{t}
$$

- Step 3: solve for $\phi\left(t, S_{t}\right)=\left[\phi_{S}\left(t, S_{t}\right) \phi_{M}\left(t, S_{t}\right)\right]$ from

$$
\left[\Phi\left(d_{1}\right) \sigma S_{t} \quad S_{t} \Phi\left(d_{1}\right)-e^{-r(T-t)} K \Phi\left(d_{2}\right)\right]=\left[\begin{array}{cc}
\phi_{S} & \phi_{M}
\end{array}\right]\left[\begin{array}{cc}
\sigma S_{t} & S_{t} \\
0 & M_{t}
\end{array}\right]
$$

- We find

$$
\begin{aligned}
\phi_{S}\left(t, S_{t}\right) & =\Phi\left(d_{1}\right) \\
\phi_{M}\left(t, S_{t}\right) & =-K \Phi\left(d_{2}\right)
\end{aligned}
$$

Delta Hedging

- The "delta" of an option is the derivative of the option price with respect to the value of the underlying Y_{i}, i.e.,

$$
\Delta_{C}=\frac{\partial \pi_{C}}{\partial Y_{i}}
$$

- There could be several underlying assets (for instance in the case of an option written on the maximum of two stocks), and in that case there are also several deltas.
- In models driven by a single Brownian motion, if an option depends on a single underlying asset, then the number of units of the underlying asset that should be held in a replicating portfolio is given by the delta of the option (as in the example). The resulting strategy is called the delta hedge.
- Under certain conditions this also works in the case of multiple underlyings.

Table of Contents

(3) Framework

4 No Arbitrage and the First FTAP
(5) The Numéraire-dependent Pricing Formula
(6) Replication and the Second FTAP
(7) The PDE Approach

The Pricing PDE

- Compute μ_{C} and σ_{C} (Itô's lemma):

$$
\begin{aligned}
& \mu_{C}=\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot \mu_{X}+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X} \sigma_{X}^{\prime}\right) \\
& \sigma_{C}=\nabla \pi_{C} \sigma_{X}
\end{aligned}
$$

- The equation $\mu_{C}-r \pi_{C}=\sigma_{C} \lambda$ becomes:

Pricing PDE

$$
\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot \underbrace{\left(\mu_{X}-\sigma_{X} \lambda\right)}_{=\mu_{X}^{Q_{N}}}+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X} \sigma_{X}^{\prime}\right)=r \pi_{C}, \quad \pi_{C}(T, x)=F(x)
$$

- This is a partial differential equation for the pricing function π_{C}.
- Notice that the boundary condition $\pi_{C}(T, x)=F(x)$ determines the type of the derivative.

Remarks

- In a model without any non-traded state variables, i.e., $Y=X$, $\pi_{Y}=x$, the NA condition becomes

$$
\mu_{X}-\sigma_{X} \lambda=r x
$$

- The PDE collapses to

$$
\frac{\partial \pi_{C}}{\partial t}+r \nabla \pi_{C} \cdot x+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X} \sigma_{X}^{\prime}\right)=r \pi_{C}
$$

- The drift term of the spatial first-order derivatives is r, which is the drift term of traded assets under \mathbb{Q}.
- The PDE may be solved analytically or numerically (finite-difference methods - generalization of tree methods).
- The PDE can also be derived using the Feynman-Kac Theorem: a mathematical statement that connects the theory of partial differential equations to conditional expectations.

Excursion: The Feynman-Kac Theorem

Theorem (Feynman-Kac)

Consider the following parabolic partial differential equation

$$
\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot \mu_{X}^{\mathbb{Q}}(t, x)+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X}(t, x) \sigma_{X}(t, x)^{\prime}\right)+f(t, x)=r(t, x) \pi_{C}
$$ subject to the terminal condition $\pi_{C}(T, x)=F(x)$. Then, the solution can be written as a conditional expectation

$$
\pi_{C}(t, x)=\mathbb{E}_{t, x}^{\mathbb{Q}}\left[\int_{t}^{T} e^{-\int_{t}^{s} r\left(\tau, X_{\tau}\right) d \tau} f\left(s, X_{s}\right) \mathrm{d} s+e^{-\int_{t}^{T} r\left(\tau, X_{\tau}\right) d \tau} F\left(X_{T}\right)\right]
$$

under \mathbb{Q} such that X is an Itô process driven by the equation

$$
\mathrm{d} X=\mu_{X}^{\mathbb{Q}}(t, X) \mathrm{d} t+\sigma_{X}(t, X) \mathrm{d} W^{\mathbb{Q}}
$$

with $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q}.

Example: Black-Scholes PDE

- Under \mathbb{Q}, the dynamics are

$$
\begin{aligned}
\mathrm{d} S_{t} & =r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}^{\mathbb{Q}} \\
\mathrm{d} M_{t} & =r M_{t} \mathrm{~d} t
\end{aligned}
$$

- Therefore, the BSPDE for a derivative with terminal payoff $F\left(S_{T}\right)$ reads

$$
\frac{\partial \pi_{C}}{\partial t}+\frac{\partial \pi_{C}}{\partial S} S r+\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} S^{2} \sigma^{2}=r \pi_{C}
$$

s.t. $\pi_{C}\left(T, S_{T}\right)=F\left(S_{T}\right)$

- In their original paper Black and Scholes (1973), derived this formula using a different approach and made two mistakes which cancel each other out. Merton (1973) corrected these mistakes and came up with the same PDE.
- The PDE can be transformed to the so-called heat equation, which is commonly used in physics and has a well-known solution.

Example: Pricing PDE with Stoch. Interest Rates

- Under \mathbb{Q}, the dynamics are

$$
\begin{aligned}
\mathrm{d} M_{t} & =r_{t} M_{t} \mathrm{~d} t \\
\mathrm{~d} S_{t} & =r_{t} S_{t} \mathrm{~d} t+\sigma_{S} S_{t} \mathrm{~d} W_{1, t}^{\mathbb{Q}} \\
\mathrm{d} r_{t} & =a^{\mathbb{Q}}\left(b^{\mathbb{Q}}-r_{t}\right) \mathrm{d} t+\sigma_{r} \mathrm{~d}\left(\rho W_{1, t}^{\mathbb{Q}}+\sqrt{1-\rho^{2}} W_{2, t}^{\mathbb{Q}}\right) .
\end{aligned}
$$

- Notice that the risk-neutral measure is not uniquely determined since the market price of risk $\lambda=\left(\lambda_{1} \lambda_{2}\right)$ is not unique.
- Therefore, the pricing PDE for a derivative with payoff $F\left(r_{T}, S_{T}\right)$ reads

$$
\begin{aligned}
r \pi_{C}= & \frac{\partial \pi_{C}}{\partial t}+\frac{\partial \pi_{C}}{\partial S} S r+\frac{\partial \pi_{C}}{\partial r} a^{\mathbb{Q}}\left(b^{\mathbb{Q}}-r\right) \\
& +\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} S^{2} \sigma_{S}^{2}+\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial r^{2}} \sigma_{r}^{2}+\frac{\partial^{2} \pi_{C}}{\partial r \partial S} \rho \sigma_{r} \sigma_{S} S
\end{aligned}
$$

s.t. $\pi_{C}\left(T, r_{T}, S_{T}\right)=F\left(r_{T}, S_{T}\right)$

Summary

- Generic State Space Model:

$$
\mathrm{d} X_{t}=\mu_{X}\left(t, X_{t}\right) \mathrm{d} t+\sigma_{X}\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad Y_{t}=\pi_{Y}\left(t, X_{t}\right)
$$

- No-arbitrage condition (from FTAP 1):

$$
\mu_{Y}-r \pi_{Y}=\sigma_{Y} \lambda
$$

- Numéraire-dependent pricing formula:

$$
\frac{C_{t}}{N_{t}}=E_{t}^{\mathbb{Q}_{N}}\left[\frac{C_{T}}{N_{T}}\right]
$$

- Replication recipe (from FTAP 2) if $\operatorname{rk}\left(\sigma_{Y} \pi_{Y}\right)=k+1$:

$$
\left[\begin{array}{ll}
\sigma_{C} & \pi_{C}
\end{array}\right]=\phi^{\prime}\left[\begin{array}{ll}
\sigma_{Y} & \pi_{Y}
\end{array}\right]
$$

- Pricing via PDE:

$$
\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot\left(\mu_{X}-\sigma_{X} \lambda\right)+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X} \sigma_{X}^{\prime}\right)=r \pi_{C}
$$

