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Introduction to Financial Modeling
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Time

Discrete time with time horizon T :

t ∈ {0,∆t, 2∆t, . . . , (n − 1)∆t, n∆t︸︷︷︸
=T

} = {i∆t | i = 0, . . . , n}

Continuous time as a limit of discrete time (∆t → 0 as n → ∞):

t ∈ [0,T ]
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Modeling in Discrete Time: First Idea

Risk-free asset (bond) paying a constant interest rate:

Bt+∆t = Bt(1 + r ·∆t) ⇐⇒ ∆Bt+∆t

Bt
= r ·∆t

Risky asset (stock):

St+∆t = St(1 + µ ·∆t + σ · νt+∆t ·
√
∆t), νt+∆t ∼i .i .d . (0, 1)

Return:

∆St+∆t

St
= µ ·∆t + σ · νt+∆t ·

√
∆t

Problem: Returns are not necessarily bounded from below by -1 and
thus asset prices can be negative.
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Log Returns

Way out? → Model log returns, Lt , and take the exponential:

St+∆t = Ste
∆Lt+∆t

Risk-free asset (bond):

Bt+∆t = Bte
r ·∆t ⇐⇒ r∆t = ln

(Bt+∆t

Bt

)
= ∆ lnBt+∆t

Risky asset (stock):

∆Lt+∆t = ln(St+∆t)− ln(St) =
(
µ− 1

2
σ2

)
∆t + σ · νt+∆t ·

√
∆t

Now, we take the limit to continuous time, i.e., we increase the
number of periods (n → ∞) while keeping the time horizon constant,
i.e., ∆t = T

n → 0.
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Log Returns

ST = S0

n−1∏
i=0

e∆L(i+1)∆t

= S0 exp
{ n−1∑

i=0

[(
µ− 1

2
σ2

)
∆t + σ · ν(i+1)∆t ·

√
∆t

]}
= S0 exp

{(
µ− 1

2
σ2

)
T + σ ·

√
∆t ·

n∑
i=1

νi∆t

}
= S0 exp

{(
µ− 1

2
σ2

)
T + σ ·

√
T · 1√

n

n∑
i=1

νi∆t

}
According to the CLT: 1√

n

∑n
i=1 νi∆t →d ZT ∼ N (0, 1) as n → ∞, i.e.,

ST →d S0 exp
{(
µ− 1

2
σ2

)
T + σ ·

√
T · ZT

}
Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 13 / 259



From Discrete to Continuous Time

In the limit, the log return is normally distributed:

LT = L0 +
(
µ− 1

2
σ2

)
T + σ ·

√
T · ZT

Consequently, in the limit ST is log-normally distributed with

mean: E[ST ] = S0e
µ·T

variance: var(ST ) = S2
0 e

2µ·T [eσ
2T − 1]

Does this mean that any discrete-time model converges to a
log-normal distribution?

How can we model asset prices in continuous time?
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Trading in Discrete Time

Assume that there is a frictionless financial market (i.e., no taxes, no
transaction costs, no short-selling constraints, ...)

Throughout the lecture we will be using vector notation:

m : number of basic assets

Yt : m-dimensional vector of asset prices at time t

ϕt : vector of number of units of assets held at time t

Portfolio value generated by the portfolio strategy (or trading
strategy) ϕ:

Vt = ϕ′tYt .

A portfolio strategy ϕ is self-financing if trading neither generates nor
destroys money, i.e.,

ϕ′t−∆tYt = ϕ′tYt .
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Trading in Discrete Time

Suppose that rebalancing takes place at times 0 < t1 < · · · < tn = T ,
i.e., tj = j∆t.

VT = V0 +
n−1∑
j=0

(Vtj+1 − Vtj ) (telescope rule)

= V0 +
n−1∑
j=0

ϕ′tj (Ytj+1 − Ytj ) (self-financing portfolio)

= V0 +
n−1∑
j=0

ϕ′tj ∆Ytj+1 .

The sum
∑n−1

j=0 ϕ
′
tj
∆Ytj+1 converges in some sense to the stochastic

integral
∫ T
0 ϕ

′
t dYt even if the integrator is of infinite variation.

The continuous-time version of self-financing is VT = V0 +
∫ T
0 ϕ

′
t dYt .
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From Discrete Time to Continuous Time

We need adequate tools for modeling asset prices in continuous time
that can be interpreted along the lines of

(1)
∆Bt+∆t

Bt
= r ·∆t

(2)
∆St+∆t

St
= µ ·∆t + σ · νt+∆t ·

√
∆t

and that preserve the limit distribution of the stock return.

Replace (1) by an ODE and (2) by an SDE:

(1′)
dBt

Bt
= rdt

(2′)
dSt
St

= µdt + σdWt

Replace the self-financing condition ϕ′t−∆tYt = ϕ′tYt by

VT = V0 +
∫ T
0 ϕ

′
t dYt for an adequately defined stochastic integral.
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Stochastic Processes

Consider a filtered probability space (Ω,A, (Ft)t≥0,P)
Ω denotes the state space.
A ⊂ 2Ω denotes a sigma algebra that contains all events for which
probabilities can be assigned.
(Ft)t≥0 denotes the filtration, which models the set of information
available at time t.
P : A → [0, 1] is a probability measure, which we refer to as real-world
probability measure.

A stochastic process X is a collection of random variables (Xt)t≥0

indexed by time.

Remarks:
Throughout the course, we assume that all processes are continuous
(i.e., “no jumps” a.s.) and adapted (i.e., “realization Xt is known at
time t”). Formulas become more involved if we relax this assumption.
I will avoid technical terms (e.g., measurability, integrability), but focus
on economic interpretations. I will rather assume that all processes
satisfy all relevant conditions.
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Brownian Motion

Definition (Brownian Motion)

A one-dimensional (standard) Brownian motion (aka Wiener Process) is a
stochastic process W = (Wt)t≥0 such that W0 = 0 a.s. and

Wt −Ws ∼ N (0, t − s) for 0 ≤ s < t (stationary increments).

Wt −Ws is independent of Wu −Wv for 0 ≤ v < u ≤ s < t
(independent increments).

A k-dimensional standard Brownian motion W = (W1, . . . ,Wk) is a
k-dimensional vector of independent Brownian motions.

Notice that the paths of a Brownian motion are continuous (a.s.) but
nowhere differentiable. In particular, the paths of Brownian motion
have infinite length on any interval (“infinite variation”).
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Brownian Motion
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Martingales

Definition (Martingale)

A stochastic process Z = (Zt)t≥0 is said to be a martingale if “the best
estimate of the future is the present”, i.e.,

Es [Zt ] = Zs t ≥ s

Martingales relate to “fair games” and are often thought of as
“purely stochastic” processes, that is, containing no trend or being
constant in expectation..

Example: Brownian motion is a martingale.

There are many generalizations of martingales, e.g.,

Submartingales (“non-decreasing in expectation”)
Supermartingales (“non-increasing in expectation”)
Local martingales (“if stopped process is a martingale”)
Semimartingales (“local martingale + process of finite variation”)
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Itô Integral

The stochastic integral (a.k.a. Itô integral) is defined by∫ T

0
Xt dZt = lim

n→∞

n∑
j=0

Xtj (Ztj+1 − Ztj )

where Z is a semimartingale, X is an adapted process, and the
stochastic limit is taken in the sense of refining partitions (i.e.,
intermediate points t0, t1, . . . , tn become more and more dense on the
interval [0,T ] as n tends to infinity).

The construction of the limit and prove of convergence is not trivial,
since in general the integrator is of infinite variation.

Such a limit does not necessarily exist pathwise.

Note: by contrast to the Riemann-Stieltjes integral, the integrand is
evaluated at the left end tj .

The stochastic integral is itself a random variable.
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Stochastic Differential Equation

Definition (Stochastic Differential Equation)

Let W be a standard Brownian motion. An expression of the form

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

for given functions µ(t,Xt) (drift) and σ(t,Xt) (volatility) is called a
stochastic differential equation (SDE) driven by Brownian motion and
should be understood as a short-hand notation for the integral equation

Xt = X0 +

∫ t

0
µ(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs .

If the drift µ(t,Xt) is zero, then the solution is a martingale.

This definition can be generalized to SDEs driven by jump processes
(e.g., Poisson processes).
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Quadratic (Co-)Variation

Let X , Y be two real-valued stochastic processes, then their
quadratic covariation process is defined as

[X ,Y ]t = lim
∆t→0

t∑
j=0

(Xtj+1 − Xj)(Ytj+1 − Yj)

The quadratic variation process of X is defined by

[X ]t = [X ,X ]t

Rules for quadratic (co)-variation:

linearity in both arguments
[X , g ] = 0 if g is a continuous function of bounded variation
d[W1,W2] = ρ dt for BMs with correlation coefficient ρ; d[W ] = dt
if dX = µX dt + σX dW1 and dY = µY dt + σY dW2, then

d[X ,Y ] = σXσY ρ dt, d[X ] = σ2
X dt
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Itô’s Lemma: Univariate Versions

Theorem (Itô’s Lemma for continuous semimartingales)

Let X be a continuous real-valued semimartingale, and f : R+ × R → R is
a C 1,2-function, then

df (t,Xt) =
∂

∂t
f (t,Xt) dt +

∂

∂x
f (t,Xt) dXt +

1

2

∂2

∂x2
f (t,Xt) d[X ,X ]t .

Theorem (Itô’s Lemma for Itô processes)

Let X be an Itô process dXt = µXdt + σXdWt , and f : R+ × R → R is a
C 1,2-function, then

df (t,Xt) =
[ ∂
∂t

f (t,Xt) +
∂

∂x
f (t,Xt)µX +

1

2

∂2

∂x2
f (t,Xt)σ

2
X

]
dt

+
∂

∂x
f (t,Xt)σ dWt .
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Problem: Black Scholes Model

Problem: Derive the stock price in the Black-Scholes model and show
that it is strictly positive almost surely.

Solution:
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Problem: Black Scholes Model
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Itô’s Lemma: Multivariate Version

Theorem (Itô’s Lemma for continuous semimartingales)

Let X = (X 1
t , . . . ,X

n
t )t≥0 be a continuous Rn-valued semimartingale, and

f : R+ × Rn → R is a C 1,2-function, then

df (t,Xt) =
∂

∂t
f (t,Xt) dt +

n∑
i=1

∂

∂xi
f (t,Xt) dX

i
t

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
f (t,Xt) d[X

i ,X j ]t .

Special Case: f (X ,Y ) = XY : Itô product rule:

d(XY )t = XtdYt + YtdXt + d[X ,Y ]t
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Itô’s Lemma: Multivariate Version

Theorem (Itô’s Lemma for multivariate Itô processes)

Let W be a k-dimensional standard Brownian motion, X be a Rn-valued
Itô process with dynamics

dXt = µXdt + σXdWt

for sufficiently smooth functions µX : R+ × Rn → Rn and
σX : R+ × Rn → Rn×k . Let f : R+ × Rn → R is a C 1,2-function with
gradient ∇f (t,Xt) and Hessian matrix Hf (t,Xt), then

df (t,Xt) =
[ ∂

∂t
f (t,Xt)︸ ︷︷ ︸
∈R

+∇f (t,Xt)︸ ︷︷ ︸
∈Rn

· µX︸︷︷︸
∈Rn

+
1

2
tr
(
Hf (t,Xt)︸ ︷︷ ︸

∈Rn×n

σX︸︷︷︸
∈Rn×k

σ′X︸︷︷︸
∈Rk×n

)]
dt

+∇f (t,Xt)︸ ︷︷ ︸
∈Rn

σX︸︷︷︸
∈Rn×k

dWt︸︷︷︸
∈Rk
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Example: Relative Asset Prices
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Change of Measure

Definition (Equivalent Probability Measure)

Two probability measures P and Q are said to be equivalent, P ∼ Q, if
both measures possess the same null sets, i.e., for all events A ∈ A

P(A) = 0 ⇐⇒ Q(A) = 0.

In our pricing applications, we consider equivalent probability
measures that are associated to a numéraire.

A numéraire is any self-financing portfolio ϕ that generates strictly
positive wealth V ϕ

t = ϕ′tYt

A probability measure Q ∼ P is said to be an equivalent martingale
measure if for every asset with price process Y i (i = 1, . . . ,m) the

price expressed in terms of the numéraire V ϕ
t is a martingale under Q.
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Change of Measure – Radon-Nikodym Theorem

The following theorem states how to switch between two equivalent
probability measures.

Theorem (Radon-Nikodym)

Let P ∼ Q denote two equivalent probability measures, then there exists a

unique (a.s.), positive random variable θ = dQ
dP such that

EQ[X ] = EP[θX ], EP[X ] = EQ
[X
θ

]
for all real-valued random variables X . In particular,

Q[A] = EP[θ 1A]

θ is called the Radon-Nikodym density (or Radon-Nikodym derivative).

Critical Question: How can we perform a change of measure if the
market is driven by Brownian motions?
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Girsanov Theorem

Theorem (Girsanov)

Suppose that a measure Q is defined in terms of a measure P by the
Radon-Nikodym process (θt)t≥0, with

dθt = −λtθt dWt

where W is a Brownian motion under P and λ is a continuous adapted
process. Then the process W̃ defined by W̃0 = 0 and

dW̃t = λt dt + dWt

is a Brownian motion under Q.

This works as well for vector BMs; in this case, write

dθt = −θtλ′t dWt , dW̃t = λt dt + dWt .
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Some Remarks

The stochastic differential equation dθt = −λtθt dWt has a unique
solution, the Radon-Nikodym process:

θt = E(λ)t = exp
(
−
∫ t

0
λsdWs −

1

2

∫ t

0
λ2sds

)
The process E(λ) is called the stochastic exponential or Doléans-Dade
exponential of λ.

The Radon-Nikodym derivative is given by

θT = exp
(
−
∫ T

0
λsdWs −

1

2

∫ T

0
λ2sds

)
The Radon-Nikodym process is a P-martingale, i.e.,

θt = Et [θT ].
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