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Problem Set 2

Problem 1 (Fundamental Notions)

(a) Explain why neither the Vasicek model nor the Cox-Ingersol-Ross model is able to

correctly model volatilities of and correlations between short-term interest rates and

long-term interest rates.

Solution: In both models, there is only one risk factor that affects short rates and long

rates in the same manner. Hence, they are perfectly correlated, which is not in line with

empirical evidence.

(b) State the definition of an affine term structure model and explain why this class is

very common in quantitative finance.

Solution: A term structure model with state variables X is called affine if it generates

T -bond prices of the form

Pt(T ) = eA(t,T )+B(t,T )′Xt

for appropriate functions A and B satisfying A(T, T ) = 0, B(T, T ) = 0. Affine term

structure models are quite tractable since they allow for closed-form representations of

bond prices and the term structure of interest rates, which is affine in X as well. Often,

these models admit closed-form solutions for bond options.

(c) Explain what is understood by interest rate risk. How is interest rate risk different

from credit risk?

Solution: Interest rate risk is the potential that a change in overall interest rates will

reduce the value of a bond or other fixed-rate investment: As interest rates rise bond

prices fall, and vice versa. While interest rate risk is a form of market risk, credit risk

refers to the risk that a party fails to make a payment, e.g., that a bond issuer cannot

pay her debt back. Credit risk is thus issuer-specific.

(d) Explain why the Nelson-Siegel model is not free of arbitrage. Is this a big problem

from a practical point of view? Which steps need to be carried out to make the

model arbitrage-free?
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Problem 2 (Relation between Vasicek and CIR) Consider the process

dYt = (2aYt + σ2)dt+ 2σ
√
YtdWt

(a) Determine the dynamics and the distribution of the process Xt =
√
Yt.

Solution: We apply Itô’s lemma to determine the dynamics of Xt with f(y) =
√
y =

y1/2. Therefore, f ′(y) = 1
2
y−1/2, f ′′(y) = −1

4
y−3/2, and hence

dXt = f ′(Yt)dYt +
1

2
f ′′(Yt)d[Y ]t

= 1
2
Y

−1/2
t (2aYt + σ2)dt+ 1

2
Y

−1/2
t 2σ

√
YtdWt − 1

2
· 1
4
Y

−3/2
t (2σ)2Ytdt

=
√
Ytadt+ σdWt

= aXtdt+ σdWt

Consequently, X is an Ornstein-Uhlenbeck process with mean-reversion level 0.

(b) What can you say about the distribution of Yt given your calculations from part (a)?

Solution: Since Yt = X2
t and Xt is normally distributed, Yt has a non-central χ2-

distribution.

Problem 3 (CIR Model) Consider the Cox-Ingersol-Ross Model

drt = a(b− rt) dt+ σ
√
rt dW

Q
t

where rt is the short rate, and the processWQ
t is a Brownian motion under the risk-neutral

probability measure.

(a) Determine the expectation of the future short rate EQ[rT ].

Solution: This problem can be solved along the lines of slides 42 and 43. Doing exactly

the same steps yields

EQ[rT ] = e−aT r0 + b(1− e−aT ) + σEQ
[ ∫ T

0

e−as√rsdWs

]
The open question is whether EQ

[ ∫ T

0
e−as√rsdWs

]
= 0.1 One can show (using some

technical arguments, which are beyond the scope of the lecture and not relevant for ex-

amination) that
∫ T

0
e−as√rsdWs is indeed a martingale. This implies EQ

[ ∫ T

0
e−as√rsdWs

]
=

0.

1For the Vasicek process, this was trivial since then the integral reads
∫ T

0
e−asdWs, which is a mar-

tingale as the integrand is deterministic. Hence EQ[ ∫ T

0
e−asdWs

]
= 0
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Thus, the expected short rate in the CIR model is identical to the expected short rate

in the Vasicek model.

(b) It is well-known that the CIR model admits an exponentially affine representation

of the price of a zero coupon bond, i.e.,

Pt(T ) = exp
(
A(t, T ) +B(t, T )rt)

)
for some functions A and B. Derive an expression for the forward rate Ft(T1, T2)

in terms of the functions A and B and the current short rate rt. Also derive the

instantaneous forward rate Ft(T ).

Solution: Prices of T -bonds and forward rates are related as follows:

Pt(T2)e
Ft(T1,T2)(T2−T1) = Pt(T1)

or equivalently,

Ft(T1, T2) =
1

T2 − T1

log
Pt(T1)

Pt(T2)

Therefore,

Ft(T1, T2) =
1

T2 − T1

log
[exp (A(t, T1) +B(t, T1)rt)

)
exp

(
A(t, T2) +B(t, T2)rt)

)]
=

1

T2 − T1

[
A(t, T1) +B(t, T1)rt − A(t, T2)−B(t, T2)rt)

]
=

1

T2 − T1

[
A(t, T1)− A(t, T2) + [B(t, T1)−B(t, T2)]rt

]
Consequently,

Ft(T ) = lim
∆t→0

Ft(T, T +∆t)

= lim
∆t→0

1

∆t

[
A(t, T )− A(t, T +∆t) + [B(t, T )−B(t, T +∆t)]rt

]
= − ∂

∂T
A(t, T )− ∂

∂T
B(t, T )rt.

Problem 4 (Interest Rate Options) A company is planning to take out a loan at

a time T1 in the future. The loan will be paid back at time T2 > T1. At that time the

company will also pay the interest on the loan. The interest rate is determined at time T1.
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In this situation, the company faces the risk that at time T1 interest rates will be high.

In order to reduce this risk, the company can enter an “interest rate cap” at level rmax.

Such a contract has the following effect:

(i) when the interest rate that holds at time T1 for loans that mature at time T2 is

higher than rmax, the effective interest rate paid by the company is only rmax;

(ii) when the interest rate that holds at time T1 for loans that mature at time T2 is less

than or equal to rmax, the rate paid by the company is the actual rate.

Continuous compounding is assumed throughout.

(a) Show that the company can achieve the effect of the interest rate cap by buying a

put option on the value at time T1 of a bond that matures at time T2. The payoff

of the put option at time T1 is

max(K − PT1(T2), 0)B

where Pt(T ) is the value at time t of a default-free bond that pays one unit of

currency at time T ≥ t, K is the strike of the option, and B is a number that

determines the size of the option contract. Given the cap level rmax and the amount

A that the company wants to borrow at time T1, determine the strike level K and

the number B so that the put option has the desired effect.

Solution: The company wants to pay at most the amount ermax(T2−T1)A at time T2.

The market value of this payment at time T1 is PT1(T2)e
rmax(T2−T1)A. The option payoff

at time T1 should be such that if this value is less than A, the payoff exactly makes up

for the difference. In other words, if the option payoff is denoted by CT1 , we should have

CT1 = max
(
A− PT1(T2)e

rmax(T2−T1)A, 0
)
=

=
(
max(e−rmax(T2−T1) − PT1(T2), 0)

)
ermax(T2−T1)A =

=
(
max(K − PT1(T2), 0)

)
B

with

K = e−rmax(T2−T1), B = ermax(T2−T1)A.
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(b) Consider now the put option of size 1, i.e., the put option with payoff max(K −
PT1(T2), 0), and assume we are working in a complete market. Using the numéraire-

dependent pricing formula, show that the value of the put option at time t < T1 is

given by

Pt(T1)KEQT1
t

[
1{PT1

(T2)<K}
]
− Pt(T2)E

QT2
t

[
1{PT1

(T2)<K}
]

where QT denotes, for any given T , the T -terminal measure, that is, the equivalent

martingale measure that corresponds to taking as a numéraire the bond that pays

one unit of currency at time T .

Solution: We can write

max(K − PT1(T2), 0) = 1PT1
(T2)<K(K − PT1(T2)).

Let the values of time t < T1 of the contracts with payoffs 1PT1
(T2)<KK and 1PT1

(T2)<KPT1(T2)

at time T1 be denoted by C1
t and C2

t respectively; then the value of the bond put at

time t is Ct = C1
t −C2

t . Apply the numéraire-dependent pricing formula with numéraire

Pt(T1) to C1
t :

C1
t

Pt(T1)
= E

QT1
t

C1
T1

PT1(T1)
= KE

QT1
t 1PT1

(T2)<K .

Apply the NDPF with numéraire Pt(T2) to C2
t :

C2
t

Pt(T2)
= E

QT2
t

C2
T1

PT1(T2)
= E

QT2
t 1PT1

(T2)<K .

Therefore, we have

Ct = C1
t − C2

t = Pt(T1)KE
QT1
t 1PT1

(T2)<K − Pt(T2)E
QT2
t 1PT1

(T2)<K .

Problem 5 (T -Forward Measure) It follows from the previous problem that the

value of an interest rate cap can be determined within a given term structure model if it

is possible, under any given terminal measure, to compute the probability that the bond

price for a given maturity at a given future time will exceed a given level. Suppose now

that we work with the Vasicek model, given in the following form:

drt = a(b− rt) dt+ σ dWQ
t

where rt is the short rate, and the process {WQ
t } is a Brownian motion under the risk-

neutral measure. Recall that the price at time t of a bond maturing at time T ≥ t is given
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in the Vasicek model by an expression of the form

Pt(T ) = exp
(
A(t, T ) +B(t, T )rt)

)
where A and B are deterministic functions of time. You may express your answers to the

questions below in terms of f and g. Recall also the change-of-numéraire formula

dWN
t = dWQ

t − σN

πN

dt

where the process {WN
t } is a Brownian motion under the equivalent martingale measure

corresponding to a new numéraire Nt.

(a) Show that, for any given T , the Vasicek model can be written in the form

drt = (−art + h(t)) dt+ σ dW T
t

where h(t) is a deterministic function of time (which may depend on T ) and the

process {W T
t } is a Brownian motion under the T -terminal measure QT . Determine

the function h(t) when T is given.

Solution: By the change-of-numéraire formula, we have

dW T
t = dWM

t − σT

πT

dt.

From the Vasicek bond price formula, the volatility of the price of the bond maturing at

time T is found to be

σT =
∂πT

∂r
σ = −g(T − t)πTσ.

Therefore, the Vasicek SDE may be rewritten as

drt = a(b− rt) dt+ σ(dW T
t − g(T − t)σ dt) =

= (−art + h(t)) dt+ σ dW T
t

where h(t) = ab− g(T − t)σ2.

(b) Show that, for any given t ≤ T1 ≤ T2, the conditional distribution (given information

up to time t) of the short rate at time T1 in the Vasicek model, under the T2-terminal

measure, is normal. How does this help to compute the value of an interest rate cap?

Solution: Notice that the short rate follows an Ornstein-Uhlenbeck process under the

T -terminal measure. Hence, the conditional distribution (given information up to time

t) of the short rate at time T1 is normal. By means of the Vasicek bond pricing formula,

the condition PT1(T2) < K can be rewritten in the form rT1 > c for a certain number c.

On the basis of the pricing formula found in part b., it is therefore possible to obtain an

expression for the value of the bond put at any time t < T1 in terms of the cumulative

normal distribution function.
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Problem 6 (Credit Risk) Suppose Merton’s firm value model is used to assess credit

risk. The firm value evolves according to

dVt = Vt

[
µdt+ σdWt

]
,

where all parameters are constant, and Wt is a standard Brownian motion under the

physical measure P. The risk-free term structure is flat with yield r, and the firm has

emitted a single zero-coupon bond with notional F and maturity T .

(a) Find an explicit expression for the distance-to-default that is the distance between

the expected value of the asset and the default point.

Solution: Default occurs at time T if the firm value falls below F . Expected asset price

at time T is thus

DDP = EP[VT ]− F = V0e
(µ−1

2
σ2)T − F,

DDQ = EQ[VT ]− F = V0e
(r−1

2
σ2)T − F.

Remark: In practice (especially in the so-caled KMV model), distance-to- default is

typically defined in terms of the expected log asset price and log face value and scaled

in terms of volatility, i.e.,

ddQ =
log(V0e

(µ−1
2
σ2)T )− log(F )

σ
√
T

= d2.

(b) In the lecture we discussed the formula

σ
Φ
(
d1(σ)

)
E(σ)

=
σE

V
,

which relates the firm value volatility to the volatility of equity. Derive this formula.

Solution: E is given by the Black-Scholes formula

E = V Φ(d1)− Fe−rTΦ(d2)

Notice that E = E(V, σ, F, r, T ). The dynamics of equity follow from Itô’s lemma

dEt =
∂E

∂V
dVt +

1

2

∂2E

∂V 2
d[V ]t

=
∂E

∂V
Vt

[
µdt+ σdWt

]
+

1

2

∂2E

∂V 2
V 2
t σ

2
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Since equity stays strictly positive before T , it can be written as

dEt = Et

[
µEdt+ σEdWt

]
Comparing the volatility parts of these dynamics yields

∂E

∂V
V σ = EσE,

where ∂E
∂V

= ∆C = Φ(d1) is the option delta.
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