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Problem Set 1

Problem 1 (Fundamental Notions and Techniques)

(a) When is a portfolio strategy said to be self-financing? Give a description in words,

and also give a mathematical formulation in a continuous-time framework. Justify

the mathematical formulation by a limit argument (full rigor not required). Solu-

tion: A trading strategy is said to be self-financing if trading does neither generate

nor destroy money. Changes in the portfolio wealth are solely driven by changes in asset

pricing.

Starting in discrete time, one can define a self-financing strategy as follows

ϕ′
tYt = ϕ′

t−1Yt

where Y denotes the vector of asset prices. One can show that this is equivalent to

VT = V0 +
n−1∑
j=0

ϕ′
tj
∆Ytj+1

Taking the limit to continuous time yields

VT = V0 +

∫ T

0

ϕ′
t dYt

or dVt = ϕ′
t dYt.

(b) What is an equivalent martingale measure? Explain its importance in quantitative

finance. Relate existence and uniqueness of the EMM to economic properties of the

market and explain them.

Solution: An equivalent martingale measure is a probability measure equivalent to P
under which deflated asset prices (with an appropriate numéraire N are martingales)

that is (Yt/Nt)t≥0 is a martingale under QN . This property reduces the pricing problem

of assets to the calculation of (conditional) expectations if such an EMM exists.

An EMM (for a given numéraire) exists if and only if the market is free of arbitrage, i.e.,

if you cannot make money out of nothing without incurring risks.
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In an arbitrage-free market for every given numéraire the EMM is uniquely determined

if and only if the market is complete, i.e., if one can replicate every riky cash-flow by

traded assets.

(c) The Feynman-Kac Theorem can be used to relate two important pricing techniques

in quantitative finance. State the theorem and explain how it can be applied for

option pricing.

Solution: Consider the following parabolic partial differential equation

∂πC

∂t
+∇πC · µQ

X(t, x) +
1
2
tr
(
HπC

σX(t, x)σX(t, x)
′
)
+ f(t, x) = r(t, x)πC

subject to the terminal condition πC(T, x) = F (x). Then, the solution can be written

as a conditional expectation

πC(t, x) = EQ
t,x

[∫ T

t

e−
∫ s
t r(τ,Xτ ) dτf(s,Xs)ds+ e−

∫ T
t r(τ,Xτ ) dτF (XT )

]
under Q such that X is an Itô process driven by the equation

dX = µQ
X(t,X) dt+ σX(t,X) dWQ,

with WQ is a Brownian motion under Q. It connects the pricing problem to the solution

of the PDE.

(d) State the two fundamental theorems of asset pricing and explain their importance

in quantitative finance.

Problem 2 (Stochastic Calculus)

(a) Suppose that the stochastic processes Xt and Yt satisfy the following system of

stochastic differential equations:

dXt = −1
2
Xt dt+ Yt dWt

dYt = −1
2
Yt dt−Xt dWt.

Compute d(X2
t + Y 2

t ).

Solution: Applying Ito’s lemma yields

dX2
t = 2Xt[−1

2
Xt dt+ Yt dWt] + Y 2

t dt

dY 2
t = 2Yt[−1

2
Yt dt−Xt dWt] +X2

t dt
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Therefore,

d(X2
t + Y 2

t ) = 0

Consequently, the process X2
t + Y 2

t is constant.

(b) Suppose that the process Xt satisfies a stochastic differential equation of the form

dXt = µt dt+ σ(t) dWt

where µt is a continuous semimartingale and σ(t) is a deterministic function of time.

Prove the following: if exp(Xt) is a martingale, then

µt = −1
2
σ2(t).

Solution: Applying Ito’s lemma yields

d exp(Xt) = exp(Xt)[µt dt+ σ(t) dWt] +
1

2
exp(Xt)σ(t)dt

= exp(Xt)
[
µt dt+

1

2
σ(t)σ(t) dWt

]
.

An Ito process is a martingale if and only if its drift term is zero, i.e.,

µt +
1

2
σ(t) = 0

which proves the claim.

(c) Let a process {Xt} be defined by

Xt = e
1
2
t sinWt.

Prove that {Xt} is a martingale.

Solution: Applying Ito’s product rule yields

dXt = sinWte
1
2
t 1
2
dt+ e

1
2
td(sinWt)

Now, we need to calculate d(sinWt). Consequently, we apply Ito’s lemma on the function

f(x) = sin(x). Since f ′(x) = cos(x), f ′′(x) = − sin(x) we obtain

dXt = sinWte
1
2
t 1
2
dt+ e

1
2
t
[
cosWtdWt − 1

2
sinWtdt

]
= e

1
2
t cosWtdWt

Since, the drift rate is zero, this process is indeed a martingale.
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Problem 3 (Black-Scholes Model) Consider the standard Black-Scholes Setting.

dSt = µSt dt+ σSt dWt,

dMt = rMt dt.

(a) Derive the price of a European put option on stock with maturity T and strike price

K from the put-call-parity. Interpret the components of the resulting formula.

Solution: The put-call-parity reads

Pt = Ct − St +Ke−rt

Substitute the Black-Scholes formula for a European call option into the PC parity:

Pt = StΦ(d1)−Ke−rtΦ(d2)− St +Ke−rt

= Ke−rt[1− Φ(d2)]− St[1− Φ(d1)]

= Ke−rtΦ(−d2)− StΦ(−d1)

where d1 and d2 is the same as for the call option.

(b) Apply the replication recipe to derive the hedging strategy ϕt = ϕ(t, St) for the put

option.

Solution: 1st step is part (a). Notice that X = Y .

2nd step: put price volatility:

σP (t, x) = ∇P (t, x)σX(t, x) = −σStΦ(−d1).

3rd step: Dynamic trading strategy

[σY πY ] =

[
Stσ S

0 Mt

]
.

Therefore, the trading strategy ϕ satisfies the following linear system:

[
−σStΦ(−d1) Pt

]
= ϕ′

[
Stσ S

0 Mt

]
Therefore,

ϕ′ =

[
Stσ S

0 Mt

]−1 [
−σStΦ(−d1) Pt

]
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Straightforward calculations deliver

ϕ′ =

[
−Φ(−d1)

KΦ(−d2)

]
.

(c) Derive the pricing kernel and the numeraire portfolio.

Solution: There are various solution approaches. The RN process satisfies

dθt = θtλdW

where λ = µ−r
σ
. In particular, the change of measure from P to Q is completely described

by

θt = exp
(
− 1

2
λ2t− λWt

)
Consequently, the pricing kernel must be Kt = θte

−rt (combine change of measure and

discounting at r). The (wealth generated by the) numéraire portfolio is the inverse of

the pricing kernel, i.e.,

Vt =
1

Kt

= exp
(
rt+ 1

2
λ2t+ λWt

)
(1)

Notice that this wealth is generated by a portfolio which invests the fraction π = λ
σ
of

wealth in the stock and the remainder in the risk-free asset. Wealth dynamics of this

strategy are

dV π
t = V π

t [r + π(µ− r)dt+ σπdWt]

and the wealth is

V π
t = exp

(
[r + π(µ− r)]t− 1

2
σ2π2t+ σπWt

)
(2)

Comparing (2) and (1) shows π = λ
σ
. One can alternatively solve the optimization

problem for the log-investor to determine the portfolio strategy π.

Problem 4 (Generic State Space Model) Consider an asset whose price St follows

a process given by

dSt = µS(t, St) dt+ σS(t, St) dWt.

Suppose that there is another traded asset whose price Ct is determined as a continuously

differentiable function of t and St:

Ct = πC(t, St).

5



Assume that (i) the price St is always positive, (ii) the volatility σS(t, S) is always positive,

and (iii) the relative price Ct/St is a strictly increasing function of St (in other words, the

function πC(t, S)/S is strictly increasing as a function of S for every fixed value of t).

(a) Prove that the market consisting of the two assets St and Ct is complete and

arbitrage-free. Construct the unique EMM.

Solution: The market is described in terms of one state variable (St), one driving

Brownian motion, and two traded assets (St and Ct). We have

[
σY πY

]
=

[
σS(t, S) S

σC(t, S) πC(t, S)

]

where Yt is the vector of asset prices, and σC = (∂πC/∂S)σS by Itô’s rule. The market

is complete and arbitrage-free if and only if the above matrix is invertible for all t and

S, or in other words, if and only if its determinant is zero.

σS(t, S)πC(t, S)− SσC(t, S) ̸= 0 for all t and S

πC(t, S)− S
∂πC

∂S
(t, S) ̸= 0 for all t and S

because the common factor σS(t, S) is always positive. Since the function πC(t, S)/S is

strictly increasing as a function of S, its partial derivative with respect to S is positive:

0 <
∂(πC(t, S)/S)

∂S
=

1

S

∂πC(t, S)

∂S
− πC(t, S)

S2
.

This implies the condition above (multiply by S2).

Assume now that a third asset is given by the equation

dBt = rBt dt

where r is a constant.

(b) State the conditions under which the market is still arbitrage-free.

Solution: The condition for the extended market to be arbitrage-free is that the equationµS

µC

rB

 =

σS S

σC πC

0 B

[
λ

r̃

]
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(with B = B0e
rt) admits a solution (λ, r̃). From the first and the third equation we get

r̃ = r and λ = (µS − rS)/σS. The condition to be fulfilled is therefore

µC − rπC = σC
µS − rS

σS

= (µS − rS)
∂πC

∂S
.

We now apply Ito’s lemma to determine the drift rate of πC(t, S):

dπC =
∂πC

∂t
dt+

∂πC

∂S
dS + 1

2

∂2πC

∂S2
σ2
Sdt = 0

Comparing these dynamics with

dπC = µCdt+ σCdW

yields µC = ∂πC

∂t
+ ∂πC

∂S
µS + 1

2
∂2πC

∂S2 σ
2
S. Substituting µC into the condition above yields

∂πC

∂t
+ rS

∂πC

∂S
+ 1

2
σ2
S

∂2πC

∂S2
= rπC .

(c) Assuming that the conditions of the previous part are satisfied, show how the value

of the asset Bt can be replicated by a self-financing portfolio consisting of the assets

St and Ct.

Solution: Apply the replication recipe:

[
σB πB

]
=

[
ϕS ϕC

] [σS S

σC πC

]
.

Since σB = 0 and πB = B0e
rt, we get

0 = ϕSσS + ϕCσC = ϕSσS + ϕC
∂πC

∂S
σS

so that ϕS = −(∂πC/∂S)ϕC , and

ertB0 = ϕSS + ϕCπC = ϕC

(
−(∂πC/∂S)S + πC).

We find ϕC = ertB0/
(
πC − (∂πC/∂S)S

)
and ϕS = −(∂πC/∂S)ϕC .
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Problem 5 (Option Pricing) The price of an asset St follows the stochastic differential

equation

dSt = µSt dt+ σ(t)St dWt

where µ is a constant and σ(t) is a deterministic function of time. The initial value S0 is

given.

(a) Describe the distribution of ST for a given time T > 0. [Hint: compute d(logSt).]

Solution: Applying Ito’s rule yields

d logS = µdt− 1

2
σ(t)2dt+ σ(t)dWt

Integrating these dynamics yields

logSt = logS0 +

∫ t

0

µds−
∫ t

0

1

2
σ(s)2ds+

∫ t

0

σ(s)dWs

Consequently, logST is normally distributed with mean M(0, T ) = logS0 + µT +
1
2

∫ T

0
σ(s)2ds and variance Σ2(0, T ) =

∫ T

0
σ2(s)ds. Hence ST is lognormally distributed

w.r.t. the parameters M(0, T ) and Σ2(0, T ).

(b) Is it possible to derive a closed-form solution for a European call option in this

setting along the lines of the Black-Scholes model? What will be different? Explain

your answer.

Solution: Yes. We know the distribution of ST under P and can derive it under Q and

QS. The distribution will not change, but the parameters will change. Nevertheless, it

will be possible to evaluate the probabilities

QS(ST > K), Q(ST > K)

along the lines of the BS-model since ST is lognormal.

Problem 6 (Option Pricing) Consider the standard Black-Scholes model given by

dSt = µSt dt+ σSt dWt

dBt = rBt dt.

A geometric Asian digital option with n equispaced sample points is defined by the payoff

function

CT =

 1 if An
T ≥ K

0 if An
T < K
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where

An
T = n

√
St1St2 · · ·Stn , ti = i

T

n
, i = 1, . . . , n.

(a) Show that, under the risk-neutral measure, the random variable Ln
T = logAn

T follows

a normal distribution, and give an expression for its mean and its variance.

Solution: Under Q, the stock dynamics are obviously

dSt = rSt dt+ σSt dW
Q
t

Therefore,

d logSt = (r − 1
2
σ2) dt+ σ dWQ

t

logSti = logS0 + (r − 1
2
σ2)ti + σWQ

ti

This shows that logSti is affine in WQ. Since the vector (WQ
t1 , . . . ,W

Q
tn) follows a

multivariate normal distribution under Q, the vector (logSt1 , . . . , logStn) is multivariate

normally distributed as well.

Since logAn
T = 1

n

∑n
i=1 logSti , we obtain

logAn
T =

1

n

n∑
i=1

[
logS0 + (r − 1

2
σ2)i

T

n
+ σWQ

iT
n

]
Obviously, the mean of logAn

T is

E[logAn
T ] = log S0 + (r − 1

2
σ2)

T

n

1

n

n∑
i=1

i

= logS0 + (r − 1
2
σ2)T

n+ 1

2n

Calculating the variance

var(logAn
T ) = var

( 1
n

n∑
i=1

σWQ
ti

)
=

σ2

n2
var

( n∑
i=1

WQ
ti

)
Notice that cov(WQ

ti ,W
Q
tj ) = min(ti, tj). Consequently,

var(logAn
T ) =

σ2

n2

n∑
i=1

n∑
j=1

min(ti, tj) =
σ2

n2

T

n

n∑
i=1

n∑
j=1

min(i, j)
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(b) Give an explicit formula, in terms of the cumulative normal distribution function,

for the option value in case n = 2 and in case n = 3.

Solution: The price of the digital option

Ct = e−rTEQ[1{logAn
T≥logK}] = e−rTQ(logAn

T ≥ logK)

Normalizing and standardizing yields

Ct = e−rTEQ[1{logAn
T≥logK}] = e−rTQ

(
ZT ≥ logK − E[logAn

T ]√
var(logAn

T )

)
,

where ZT ∼ (0, 1). Consequently, Ct = e−rTΦ(d) with

d =
log(S0/K) + (r − 1

2
σ2)T n+1

2n

σ
n

√
T
n

∑n
i=1

∑n
j=1min(i, j)

For n = 2:

d =
log(S0/K) + (r − 1

2
σ2)3T

4

σ
√

5T
8

For n = 3:

d =
log(S0/K) + (r − 1

2
σ2)2T

3

σ
√

14T
27

Problem 7 (Generic State Space Model) Assume the following option pricing model

with stochastic interest rates under the real-world measure.

dSt = µSt dt+ σsSt dW1,t

dMt = rtMt dt

drt = a(b− rt) dt+ σr

√
rt(ρ dW1,t +

√
1− ρ2 dW2,t)

where µ, a, b ∈ R are real constants, σr, σs > 0, ρ ∈ (−1, 1), and W1 and W2 are two

independent standard Brownian motions.

(a) Show that the model is arbitrage free yet incomplete.

Solution: NA criterion: πy = [S M ]′, µy = [Sµ Mr]′, σy =

σyλ+ πyr̂ = µy
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leads to the system

σsSλ1 + Sr = µS

Mr̂ = Mr,

which has a solution [λ1 λ2 r̂]′ with λ1 = µ−r
σs

, r̂ = r, and λ2 can be chosen arbitra-

rily. Hence, there is a risk-neutral measure, but the change of measure is not uniquely

determined. According to the FTAPs, the market is free of arbitrage yet incomplete.

Suppose that another asset with price Vt is added to this model, and that Wt satisfies the

stochastic differential equation

dVt = Vt[rt + π(µ− rt)] dt+ Vtπσs dW1,t

where π is a constant.

(b) Show that the asset Vt can be replicated by following a self-financing trading strategy

using the stock St and the money market account Mt. Determine the replicating

strategy explicitly in terms of the state variables Mt, St, and Vt.

Solution: Replication recipe

Vt = ϕ1S + ϕ2M

Vtπσs = ϕ1Sσs

Consequently, ϕ1 =
V π
S
, ϕ2 =

V−ϕ1S
M

(d) Why is it possible to replicate Vt despite the fact that the market is incomplete?

Solution: Because V is a linear combination of the MMA and the stock and not driven

by the second SBM.

(e) State an interpretation of the asset Vt and the parameter π.

Solution: V is a portfolio where the investor invests a a fraction π of her wealth in the

stock and the residual in the MMA.

(f) Explain why the asset Vt can be taken as a numéraire and relate the parameter π

to three different equivalent martingale measures in the lecture and the numéraires

they are associated with.

Solution: V is a tradeable asset that stays strictly positive.

11



(a) π = 0: Nt = Mt, Q ∼ P

(b) π = 1: Nt = St, QS ∼ P

(c) π = µ−r
σs

, N is the numeraire portfolio, and QN = P

(g) Suppose now you want to price a derivative with payoff CT = F (ST , rT ). Write down

the PDE the derivative has to satisfy. What problem does occur in this setting?

Solution:

Ct + CSrS +
1

2
CSSS

2σ2
s + Crâ(̂b− r) +

1

2
Crrrσ

2
r + CrSS

√
rσrσsρ = rC

Problem: the drift rate of r is not uniquely determined under Q due to market incom-

pleteness.

12


