Valuation and Risk Management 2023
 Tilburg School of Economics and Management
 Christoph Hambel
 Problem Set 1

Problem 1 (Fundamental Notions and Techniques)

(a) When is a portfolio strategy said to be self-financing? Give a description in words, and also give a mathematical formulation in a continuous-time framework. Justify the mathematical formulation by a limit argument (full rigor not required). Solution: A trading strategy is said to be self-financing if trading does neither generate nor destroy money. Changes in the portfolio wealth are solely driven by changes in asset pricing.

Starting in discrete time, one can define a self-financing strategy as follows

$$
\phi_{t}^{\prime} Y_{t}=\phi_{t-1}^{\prime} Y_{t}
$$

where Y denotes the vector of asset prices. One can show that this is equivalent to

$$
V_{T}=V_{0}+\sum_{j=0}^{n-1} \phi_{t_{j}}^{\prime} \Delta Y_{t_{j+1}}
$$

Taking the limit to continuous time yields

$$
V_{T}=V_{0}+\int_{0}^{T} \phi_{t}^{\prime} \mathrm{d} Y_{t}
$$

or $\mathrm{d} V_{t}=\phi_{t}^{\prime} \mathrm{d} Y_{t}$.
(b) What is an equivalent martingale measure? Explain its importance in quantitative finance. Relate existence and uniqueness of the EMM to economic properties of the market and explain them.

Solution: An equivalent martingale measure is a probability measure equivalent to \mathbb{P} under which deflated asset prices (with an appropriate numéraire N are martingales) that is $\left(Y_{t} / N_{t}\right)_{t \geq 0}$ is a martingale under \mathbb{Q}_{N}. This property reduces the pricing problem of assets to the calculation of (conditional) expectations if such an EMM exists.
An EMM (for a given numéraire) exists if and only if the market is free of arbitrage, i.e., if you cannot make money out of nothing without incurring risks.

In an arbitrage-free market for every given numéraire the EMM is uniquely determined if and only if the market is complete, i.e., if one can replicate every riky cash-flow by traded assets.
(c) The Feynman-Kac Theorem can be used to relate two important pricing techniques in quantitative finance. State the theorem and explain how it can be applied for option pricing.
Solution: Consider the following parabolic partial differential equation

$$
\frac{\partial \pi_{C}}{\partial t}+\nabla \pi_{C} \cdot \mu_{X}^{\mathbb{Q}}(t, x)+\frac{1}{2} \operatorname{tr}\left(H_{\pi_{C}} \sigma_{X}(t, x) \sigma_{X}(t, x)^{\prime}\right)+f(t, x)=r(t, x) \pi_{C}
$$

subject to the terminal condition $\pi_{C}(T, x)=F(x)$. Then, the solution can be written as a conditional expectation

$$
\pi_{C}(t, x)=\mathbb{E}_{t, x}^{\mathbb{Q}}\left[\int_{t}^{T} e^{-\int_{t}^{s} r\left(\tau, X_{\tau}\right) d \tau} f\left(s, X_{s}\right) \mathrm{d} s+e^{-\int_{t}^{T} r\left(\tau, X_{\tau}\right) d \tau} F\left(X_{T}\right)\right]
$$

under \mathbb{Q} such that X is an Itô process driven by the equation

$$
\mathrm{d} X=\mu_{X}^{\mathbb{Q}}(t, X) \mathrm{d} t+\sigma_{X}(t, X) \mathrm{d} W^{\mathbb{Q}},
$$

with $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q}. It connects the pricing problem to the solution of the PDE.
(d) State the two fundamental theorems of asset pricing and explain their importance in quantitative finance.

Problem 2 (Stochastic Calculus)

(a) Suppose that the stochastic processes X_{t} and Y_{t} satisfy the following system of stochastic differential equations:

$$
\begin{aligned}
d X_{t} & =-\frac{1}{2} X_{t} d t+Y_{t} d W_{t} \\
d Y_{t} & =-\frac{1}{2} Y_{t} d t-X_{t} d W_{t}
\end{aligned}
$$

Compute $d\left(X_{t}^{2}+Y_{t}^{2}\right)$.
Solution: Applying Ito's lemma yields

$$
\begin{aligned}
d X_{t}^{2} & =2 X_{t}\left[-\frac{1}{2} X_{t} d t+Y_{t} d W_{t}\right]+Y_{t}^{2} d t \\
d Y_{t}^{2} & =2 Y_{t}\left[-\frac{1}{2} Y_{t} d t-X_{t} d W_{t}\right]+X_{t}^{2} d t
\end{aligned}
$$

Therefore,

$$
d\left(X_{t}^{2}+Y_{t}^{2}\right)=0
$$

Consequently, the process $X_{t}^{2}+Y_{t}^{2}$ is constant.
(b) Suppose that the process X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=\mu_{t} d t+\sigma(t) d W_{t}
$$

where μ_{t} is a continuous semimartingale and $\sigma(t)$ is a deterministic function of time. Prove the following: if $\exp \left(X_{t}\right)$ is a martingale, then

$$
\mu_{t}=-\frac{1}{2} \sigma^{2}(t)
$$

Solution: Applying Ito's lemma yields

$$
\begin{aligned}
d \exp \left(X_{t}\right) & =\exp \left(X_{t}\right)\left[\mu_{t} d t+\sigma(t) d W_{t}\right]+\frac{1}{2} \exp \left(X_{t}\right) \sigma(t) \mathrm{d} t \\
& =\exp \left(X_{t}\right)\left[\mu_{t} d t+\frac{1}{2} \sigma(t) \sigma(t) d W_{t}\right]
\end{aligned}
$$

An Ito process is a martingale if and only if its drift term is zero, i.e.,

$$
\mu_{t}+\frac{1}{2} \sigma(t)=0
$$

which proves the claim.
(c) Let a process $\left\{X_{t}\right\}$ be defined by

$$
X_{t}=e^{\frac{1}{2} t} \sin W_{t}
$$

Prove that $\left\{X_{t}\right\}$ is a martingale.
Solution: Applying Ito's product rule yields

$$
d X_{t}=\sin W_{t} e^{\frac{1}{2} t} \frac{1}{2} d t+e^{\frac{1}{2} t} d\left(\sin W_{t}\right)
$$

Now, we need to calculate $d\left(\sin W_{t}\right)$. Consequently, we apply Ito's lemma on the function $f(x)=\sin (x)$. Since $f^{\prime}(x)=\cos (x), f^{\prime \prime}(x)=-\sin (x)$ we obtain

$$
\begin{aligned}
d X_{t} & =\sin W_{t} e^{\frac{1}{2} t} \frac{1}{2} d t+e^{\frac{1}{2} t}\left[\cos W_{t} \mathrm{~d} W_{t}-\frac{1}{2} \sin W_{t} d t\right] \\
& =e^{\frac{1}{2} t} \cos W_{t} \mathrm{~d} W_{t}
\end{aligned}
$$

Since, the drift rate is zero, this process is indeed a martingale.

Problem 3 (Black-Scholes Model) Consider the standard Black-Scholes Setting.

$$
\begin{aligned}
\mathrm{d} S_{t} & =\mu S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}, \\
\mathrm{~d} M_{t} & =r M_{t} \mathrm{~d} t
\end{aligned}
$$

(a) Derive the price of a European put option on stock with maturity T and strike price K from the put-call-parity. Interpret the components of the resulting formula.

Solution: The put-call-parity reads

$$
P_{t}=C_{t}-S_{t}+K \mathrm{e}^{-r t}
$$

Substitute the Black-Scholes formula for a European call option into the PC parity:

$$
\begin{aligned}
P_{t} & =S_{t} \Phi\left(d_{1}\right)-K \mathrm{e}^{-r t} \Phi\left(d_{2}\right)-S_{t}+K \mathrm{e}^{-r t} \\
& =K \mathrm{e}^{-r t}\left[1-\Phi\left(d_{2}\right)\right]-S_{t}\left[1-\Phi\left(d_{1}\right)\right] \\
& =K \mathrm{e}^{-r t} \Phi\left(-d_{2}\right)-S_{t} \Phi\left(-d_{1}\right)
\end{aligned}
$$

where d_{1} and d_{2} is the same as for the call option.
(b) Apply the replication recipe to derive the hedging strategy $\phi_{t}=\phi\left(t, S_{t}\right)$ for the put option.

Solution: 1st step is part (a). Notice that $X=Y$.
2nd step: put price volatility:

$$
\sigma_{P}(t, x)=\nabla P(t, x) \sigma_{X}(t, x)=-\sigma S_{t} \Phi\left(-d_{1}\right)
$$

3rd step: Dynamic trading strategy

$$
\left[\begin{array}{ll}
\sigma_{Y} & \pi_{Y}
\end{array}\right]=\left[\begin{array}{cc}
S_{t} \sigma & S \\
0 & M_{t}
\end{array}\right]
$$

Therefore, the trading strategy ϕ satisfies the following linear system:

$$
\left[-\sigma S_{t} \Phi\left(-d_{1}\right) \quad P_{t}\right]=\phi^{\prime}\left[\begin{array}{cc}
S_{t} \sigma & S \\
0 & M_{t}
\end{array}\right]
$$

Therefore,

$$
\phi^{\prime}=\left[\begin{array}{cc}
S_{t} \sigma & S \\
0 & M_{t}
\end{array}\right]^{-1}\left[-\sigma S_{t} \Phi\left(-d_{1}\right) \quad P_{t}\right]
$$

Straightforward calculations deliver

$$
\phi^{\prime}=\left[\begin{array}{l}
-\Phi\left(-d_{1}\right) \\
K \Phi\left(-d_{2}\right)
\end{array}\right] .
$$

(c) Derive the pricing kernel and the numeraire portfolio.

Solution: There are various solution approaches. The RN process satisfies

$$
\mathrm{d} \theta_{t}=\theta_{t} \lambda \mathrm{~d} W
$$

where $\lambda=\frac{\mu-r}{\sigma}$. In particular, the change of measure from \mathbb{P} to \mathbb{Q} is completely described by

$$
\theta_{t}=\exp \left(-\frac{1}{2} \lambda^{2} t-\lambda W_{t}\right)
$$

Consequently, the pricing kernel must be $K_{t}=\theta_{t} \mathrm{e}^{-r t}$ (combine change of measure and discounting at r). The (wealth generated by the) numéraire portfolio is the inverse of the pricing kernel, i.e.,

$$
\begin{equation*}
V_{t}=\frac{1}{K_{t}}=\exp \left(r t+\frac{1}{2} \lambda^{2} t+\lambda W_{t}\right) \tag{1}
\end{equation*}
$$

Notice that this wealth is generated by a portfolio which invests the fraction $\pi=\frac{\lambda}{\sigma}$ of wealth in the stock and the remainder in the risk-free asset. Wealth dynamics of this strategy are

$$
\mathrm{d} V_{t}^{\pi}=V_{t}^{\pi}\left[r+\pi(\mu-r) \mathrm{d} t+\sigma \pi \mathrm{d} W_{t}\right]
$$

and the wealth is

$$
\begin{equation*}
V_{t}^{\pi}=\exp \left([r+\pi(\mu-r)] t-\frac{1}{2} \sigma^{2} \pi^{2} t+\sigma \pi W_{t}\right) \tag{2}
\end{equation*}
$$

Comparing (2) and (1) shows $\pi=\frac{\lambda}{\sigma}$. One can alternatively solve the optimization problem for the log-investor to determine the portfolio strategy π.

Problem 4 (Generic State Space Model) Consider an asset whose price S_{t} follows a process given by

$$
d S_{t}=\mu_{S}\left(t, S_{t}\right) d t+\sigma_{S}\left(t, S_{t}\right) d W_{t}
$$

Suppose that there is another traded asset whose price C_{t} is determined as a continuously differentiable function of t and S_{t} :

$$
C_{t}=\pi_{C}\left(t, S_{t}\right)
$$

Assume that (i) the price S_{t} is always positive, (ii) the volatility $\sigma_{S}(t, S)$ is always positive, and (iii) the relative price C_{t} / S_{t} is a strictly increasing function of S_{t} (in other words, the function $\pi_{C}(t, S) / S$ is strictly increasing as a function of S for every fixed value of $\left.t\right)$.
(a) Prove that the market consisting of the two assets S_{t} and C_{t} is complete and arbitrage-free. Construct the unique EMM.

Solution: The market is described in terms of one state variable $\left(S_{t}\right)$, one driving Brownian motion, and two traded assets (S_{t} and C_{t}). We have

$$
\left[\begin{array}{cc}
\sigma_{Y} & \pi_{Y}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{S}(t, S) & S \\
\sigma_{C}(t, S) & \pi_{C}(t, S)
\end{array}\right]
$$

where Y_{t} is the vector of asset prices, and $\sigma_{C}=\left(\partial \pi_{C} / \partial S\right) \sigma_{S}$ by Itô's rule. The market is complete and arbitrage-free if and only if the above matrix is invertible for all t and S, or in other words, if and only if its determinant is zero.

$$
\begin{aligned}
\sigma_{S}(t, S) \pi_{C}(t, S)-S \sigma_{C}(t, S) \neq 0 & \text { for all } t \text { and } S \\
\pi_{C}(t, S)-S \frac{\partial \pi_{C}}{\partial S}(t, S) \neq 0 & \text { for all } t \text { and } S
\end{aligned}
$$

because the common factor $\sigma_{S}(t, S)$ is always positive. Since the function $\pi_{C}(t, S) / S$ is strictly increasing as a function of S, its partial derivative with respect to S is positive:

$$
0<\frac{\partial\left(\pi_{C}(t, S) / S\right)}{\partial S}=\frac{1}{S} \frac{\partial \pi_{C}(t, S)}{\partial S}-\frac{\pi_{C}(t, S)}{S^{2}}
$$

This implies the condition above (multiply by S^{2}).

Assume now that a third asset is given by the equation

$$
d B_{t}=r B_{t} d t
$$

where r is a constant.
(b) State the conditions under which the market is still arbitrage-free.

Solution: The condition for the extended market to be arbitrage-free is that the equation

$$
\left[\begin{array}{l}
\mu_{S} \\
\mu_{C} \\
r B
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{S} & S \\
\sigma_{C} & \pi_{C} \\
0 & B
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\tilde{r}
\end{array}\right]
$$

(with $B=B_{0} e^{r t}$) admits a solution (λ, \tilde{r}). From the first and the third equation we get $\tilde{r}=r$ and $\lambda=\left(\mu_{S}-r S\right) / \sigma_{S}$. The condition to be fulfilled is therefore

$$
\mu_{C}-r \pi_{C}=\sigma_{C} \frac{\mu_{S}-r S}{\sigma_{S}}=\left(\mu_{S}-r S\right) \frac{\partial \pi_{C}}{\partial S} .
$$

We now apply Ito's lemma to determine the drift rate of $\pi_{C}(t, S)$:

$$
d \pi_{C}=\frac{\partial \pi_{C}}{\partial t} d t+\frac{\partial \pi_{C}}{\partial S} d S+\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} \sigma_{S}^{2} d t=0
$$

Comparing these dynamics with

$$
d \pi_{C}=\mu_{C} d t+\sigma_{C} d W
$$

yields $\mu_{C}=\frac{\partial \pi_{C}}{\partial t}+\frac{\partial \pi_{C}}{\partial S} \mu_{S}+\frac{1}{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}} \sigma_{S}^{2}$. Substituting μ_{C} into the condition above yields

$$
\frac{\partial \pi_{C}}{\partial t}+r S \frac{\partial \pi_{C}}{\partial S}+\frac{1}{2} \sigma_{S}^{2} \frac{\partial^{2} \pi_{C}}{\partial S^{2}}=r \pi_{C} .
$$

(c) Assuming that the conditions of the previous part are satisfied, show how the value of the asset B_{t} can be replicated by a self-financing portfolio consisting of the assets S_{t} and C_{t}.

Solution: Apply the replication recipe:

$$
\left[\begin{array}{ll}
\sigma_{B} & \pi_{B}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{S} & \phi_{C}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{S} & S \\
\sigma_{C} & \pi_{C}
\end{array}\right] .
$$

Since $\sigma_{B}=0$ and $\pi_{B}=B_{0} e^{r t}$, we get

$$
0=\phi_{S} \sigma_{S}+\phi_{C} \sigma_{C}=\phi_{S} \sigma_{S}+\phi_{C} \frac{\partial \pi_{C}}{\partial S} \sigma_{S}
$$

so that $\phi_{S}=-\left(\partial \pi_{C} / \partial S\right) \phi_{C}$, and

$$
e^{r t} B_{0}=\phi_{S} S+\phi_{C} \pi_{C}=\phi_{C}\left(-\left(\partial \pi_{C} / \partial S\right) S+\pi_{C}\right) .
$$

We find $\phi_{C}=e^{r t} B_{0} /\left(\pi_{C}-\left(\partial \pi_{C} / \partial S\right) S\right)$ and $\phi_{S}=-\left(\partial \pi_{C} / \partial S\right) \phi_{C}$.

Problem 5 (Option Pricing) The price of an asset S_{t} follows the stochastic differential equation

$$
d S_{t}=\mu S_{t} d t+\sigma(t) S_{t} d W_{t}
$$

where μ is a constant and $\sigma(t)$ is a deterministic function of time. The initial value S_{0} is given.
(a) Describe the distribution of S_{T} for a given time $T>0$. [Hint: compute $d\left(\log S_{t}\right)$.]

Solution: Applying Ito's rule yields

$$
d \log S=\mu d t-\frac{1}{2} \sigma(t)^{2} d t+\sigma(t) d W_{t}
$$

Integrating these dynamics yields

$$
\log S_{t}=\log S_{0}+\int_{0}^{t} \mu d s-\int_{0}^{t} \frac{1}{2} \sigma(s)^{2} d s+\int_{0}^{t} \sigma(s) d W_{s}
$$

Consequently, $\log S_{T}$ is normally distributed with mean $M(0, T)=\log S_{0}+\mu T+$ $\frac{1}{2} \int_{0}^{T} \sigma(s)^{2} d s$ and variance $\Sigma^{2}(0, T)=\int_{0}^{T} \sigma^{2}(s) d s$. Hence S_{T} is lognormally distributed w.r.t. the parameters $M(0, T)$ and $\Sigma^{2}(0, T)$.
(b) Is it possible to derive a closed-form solution for a European call option in this setting along the lines of the Black-Scholes model? What will be different? Explain your answer.

Solution: Yes. We know the distribution of S_{T} under \mathbb{P} and can derive it under \mathbb{Q} and \mathbb{Q}_{S}. The distribution will not change, but the parameters will change. Nevertheless, it will be possible to evaluate the probabilities

$$
\mathbb{Q}^{S}\left(S_{T}>K\right), \quad \mathbb{Q}\left(S_{T}>K\right)
$$

along the lines of the BS-model since S_{T} is lognormal.

Problem 6 (Option Pricing) Consider the standard Black-Scholes model given by

$$
\begin{aligned}
& d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t} \\
& d B_{t}=r B_{t} d t .
\end{aligned}
$$

A geometric Asian digital option with n equispaced sample points is defined by the payoff function

$$
C_{T}= \begin{cases}1 & \text { if } A_{T}^{n} \geq K \\ 0 & \text { if } A_{T}^{n}<K\end{cases}
$$

where

$$
A_{T}^{n}=\sqrt[n]{S_{t_{1}} S_{t_{2}} \cdots S_{t_{n}}}, \quad t_{i}=i \frac{T}{n}, \quad i=1, \ldots, n
$$

(a) Show that, under the risk-neutral measure, the random variable $L_{T}^{n}=\log A_{T}^{n}$ follows a normal distribution, and give an expression for its mean and its variance.

Solution: Under \mathbb{Q}, the stock dynamics are obviously

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}^{\mathbb{Q}}
$$

Therefore,

$$
\begin{aligned}
d \log S_{t} & =\left(r-\frac{1}{2} \sigma^{2}\right) d t+\sigma d W_{t}^{\mathbb{Q}} \\
\log S_{t_{i}} & =\log S_{0}+\left(r-\frac{1}{2} \sigma^{2}\right) t_{i}+\sigma W_{t_{i}}^{\mathbb{Q}}
\end{aligned}
$$

This shows that $\log S_{t_{i}}$ is affine in $W^{\mathbb{Q}}$. Since the vector $\left(W_{t_{1}}^{\mathbb{Q}}, \ldots, W_{t_{n}}^{\mathbb{Q}}\right)$ follows a multivariate normal distribution under \mathbb{Q}, the vector $\left(\log S_{t_{1}}, \ldots, \log S_{t_{n}}\right)$ is multivariate normally distributed as well.
Since $\log A_{T}^{n}=\frac{1}{n} \sum_{i=1}^{n} \log S_{t_{i}}$, we obtain

$$
\log A_{T}^{n}=\frac{1}{n} \sum_{i=1}^{n}\left[\log S_{0}+\left(r-\frac{1}{2} \sigma^{2}\right) i \frac{T}{n}+\sigma W_{i \frac{T}{n}}^{\mathbb{Q}}\right]
$$

Obviously, the mean of $\log A_{T}^{n}$ is

$$
\begin{aligned}
\mathbb{E}\left[\log A_{T}^{n}\right] & =\log S_{0}+\left(r-\frac{1}{2} \sigma^{2}\right) \frac{T}{n} \frac{1}{n} \sum_{i=1}^{n} i \\
& =\log S_{0}+\left(r-\frac{1}{2} \sigma^{2}\right) T \frac{n+1}{2 n}
\end{aligned}
$$

Calculating the variance

$$
\operatorname{var}\left(\log A_{T}^{n}\right)=\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} \sigma W_{t_{i}}^{\mathbb{Q}}\right)=\frac{\sigma^{2}}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} W_{t_{i}}^{\mathbb{Q}}\right)
$$

Notice that $\operatorname{cov}\left(W_{t_{i}}^{\mathbb{Q}}, W_{t_{j}}^{\mathbb{Q}}\right)=\min \left(t_{i}, t_{j}\right)$. Consequently,

$$
\operatorname{var}\left(\log A_{T}^{n}\right)=\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \min \left(t_{i}, t_{j}\right)=\frac{\sigma^{2}}{n^{2}} \frac{T}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \min (i, j)
$$

(b) Give an explicit formula, in terms of the cumulative normal distribution function, for the option value in case $n=2$ and in case $n=3$.

Solution: The price of the digital option

$$
C_{t}=\mathrm{e}^{-r T} \mathbb{E}^{\mathbb{Q}}\left[1_{\left\{\log A_{T}^{n} \geq \log K\right\}}\right]=\mathrm{e}^{-r T} \mathbb{Q}\left(\log A_{T}^{n} \geq \log K\right)
$$

Normalizing and standardizing yields

$$
C_{t}=\mathrm{e}^{-r T} \mathbb{E}^{\mathbb{Q}}\left[1_{\left\{\log A_{T}^{n} \geq \log K\right\}}\right]=\mathrm{e}^{-r T} \mathbb{Q}\left(Z_{T} \geq \frac{\log K-\mathbb{E}\left[\log A_{T}^{n}\right]}{\sqrt{\operatorname{var}\left(\log A_{T}^{n}\right)}}\right)
$$

where $Z_{T} \sim(0,1)$. Consequently, $C_{t}=\mathrm{e}^{-r T} \Phi(d)$ with

$$
d=\frac{\log \left(S_{0} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T \frac{n+1}{2 n}}{\frac{\sigma}{n} \sqrt{\frac{T}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \min (i, j)}}
$$

For $n=2$:

$$
d=\frac{\log \left(S_{0} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right) \frac{3 T}{4}}{\sigma \sqrt{\frac{5 T}{8}}}
$$

For $n=3$:

$$
d=\frac{\log \left(S_{0} / K\right)+\left(r-\frac{1}{2} \sigma^{2}\right) \frac{2 T}{3}}{\sigma \sqrt{\frac{14 T}{27}}}
$$

Problem 7 (Generic State Space Model) Assume the following option pricing model with stochastic interest rates under the real-world measure.

$$
\begin{aligned}
\mathrm{d} S_{t} & =\mu S_{t} \mathrm{~d} t+\sigma_{s} S_{t} \mathrm{~d} W_{1, t} \\
\mathrm{~d} M_{t} & =r_{t} M_{t} \mathrm{~d} t \\
\mathrm{~d} r_{t} & =a\left(b-r_{t}\right) \mathrm{d} t+\sigma_{r} \sqrt{r_{t}}\left(\rho \mathrm{~d} W_{1, t}+\sqrt{1-\rho^{2}} \mathrm{~d} W_{2, t}\right)
\end{aligned}
$$

where $\mu, a, b \in \mathbb{R}$ are real constants, $\sigma_{r}, \sigma_{s}>0, \rho \in(-1,1)$, and W_{1} and W_{2} are two independent standard Brownian motions.
(a) Show that the model is arbitrage free yet incomplete.

Solution: NA criterion: $\pi_{y}=\left[\begin{array}{ll}S & M\end{array}\right]^{\prime}, \mu_{y}=\left[\begin{array}{ll}S \mu & M r\end{array}\right]^{\prime}, \sigma_{y}=$

$$
\sigma_{y} \lambda+\pi_{y} \widehat{r}=\mu_{y}
$$

leads to the system

$$
\begin{aligned}
& \sigma_{s} S \lambda_{1}+S r=\mu S \\
& M \widehat{r}=M r,
\end{aligned}
$$

which has a solution [$\left.\begin{array}{lll}\lambda_{1} & \lambda_{2} & \widehat{r}\end{array}\right]^{\prime}$ with $\lambda_{1}=\frac{\mu-r}{\sigma_{s}}, \widehat{r}=r$, and λ_{2} can be chosen arbitrarily. Hence, there is a risk-neutral measure, but the change of measure is not uniquely determined. According to the FTAPs, the market is free of arbitrage yet incomplete.

Suppose that another asset with price V_{t} is added to this model, and that W_{t} satisfies the stochastic differential equation

$$
\mathrm{d} V_{t}=V_{t}\left[r_{t}+\pi\left(\mu-r_{t}\right)\right] \mathrm{d} t+V_{t} \pi \sigma_{s} \mathrm{~d} W_{1, t}
$$

where π is a constant.
(b) Show that the asset V_{t} can be replicated by following a self-financing trading strategy using the stock S_{t} and the money market account M_{t}. Determine the replicating strategy explicitly in terms of the state variables M_{t}, S_{t}, and V_{t}.

Solution: Replication recipe

$$
\begin{aligned}
V_{t} & =\phi_{1} S+\phi_{2} M \\
V_{t} \pi \sigma_{s} & =\phi_{1} S \sigma_{s}
\end{aligned}
$$

Consequently, $\phi_{1}=\frac{V \pi}{S}, \phi_{2}=\frac{V-\phi_{1} S}{M}$
(d) Why is it possible to replicate V_{t} despite the fact that the market is incomplete?

Solution: Because V is a linear combination of the MMA and the stock and not driven by the second SBM.
(e) State an interpretation of the asset V_{t} and the parameter π.

Solution: V is a portfolio where the investor invests a a fraction π of her wealth in the stock and the residual in the MMA.
(f) Explain why the asset V_{t} can be taken as a numéraire and relate the parameter π to three different equivalent martingale measures in the lecture and the numéraires they are associated with.

Solution: V is a tradeable asset that stays strictly positive.
(a) $\pi=0: N_{t}=M_{t}, \mathbb{Q} \sim \mathbb{P}$
(b) $\pi=1: N_{t}=S_{t}, \mathbb{Q}_{S} \sim \mathbb{P}$
(c) $\pi=\frac{\mu-r}{\sigma_{s}}, N$ is the numeraire portfolio, and $\mathbb{Q}_{N}=\mathbb{P}$
(g) Suppose now you want to price a derivative with payoff $C_{T}=F\left(S_{T}, r_{T}\right)$. Write down the PDE the derivative has to satisfy. What problem does occur in this setting?

Solution:

$$
C_{t}+C_{S} r S+\frac{1}{2} C_{S S} S^{2} \sigma_{s}^{2}+C_{r} \widehat{a}(\widehat{b}-r)+\frac{1}{2} C_{r r} r \sigma_{r}^{2}+C_{r S} S \sqrt{r} \sigma_{r} \sigma_{s} \rho=r C
$$

Problem: the drift rate of r is not uniquely determined under \mathbb{Q} due to market incompleteness.

