Capital Markets and Asset Pricing Goethe Business School Summer Term 2022 Dr. Christoph Hambel Problem Set 4

Problem 4.1 (Portfolio Selection Theory) The expected returns of two assets A and B are 8% and 12%. The volatilities are 15% and 20%. Besides, the covariance of the returns is 1.8%.

- (a) Determine the expected return and volatility of a portfolio investing 30% of wealth in asset A and 70% in asset B.
- (b) Determine the portfolio weights of the minimum-variance portfolio consisting of the two assets A and B only.
- (c) Determine the MVP's expected return and volatility, and interpret your results
- (d) Is there a diversification effect if the returns are not correlated?

Problem 4.2 (Capital Asset Pricing Model) Suppose you have estimated a stock volatility of $\sigma_i = 22\%$. Ignoring Roll's critique you proxy the market portfolio by an index, whose volatility is $\sigma_M = 16\%$. Besides you estimate a correlation between the stock return and the market return of 54%.

- (a) Determine the covariance between the asset and the market and the asset's beta factor.
- (b) Suppose now the risk-free rate is 1.5% and you have observed a market risk premium of 6.5%. What is the expected market return? Depict the Security Market Line and explain its components.
- (c) What is the expected return of the asset from (a) according to the CAPM?
- (d) Suppose that the CAPM holds true. What would happen if the expected return were 7.5%?
- (e) Determine the asset's unsystematic risk.

Problem 4.3 (Arbitrage Pricing Theory) We consider a two-factor APT and assume that idiosyncratic risk can be disregarded. There are two traded stocks and a risk-free asset.

(a) Explain how the model can be estimated and write down the security market line.

The risk-free rate is 1.5%. The factor loadings and expected returns of the two stocks are summarized in the following table.

Security	b_{i1}	b_{i2}	Exp. return
А	0.25	0.8	16.2%
В	0.75	0.9	21.6%

- (b) Determine the risk premia of the two factors.
- (c) You have 500 euros available. If you invest 800 euros in stock 1 and short sell 300 euros of stock 2, what are the sensitivities of your portfolio to the two factors? What is the expected return of that portfolio?
- (d) Construct a portfolio consisting of assets A and B which is insensitive to the first factor.
- (e) Determine the expected return of an asset with sensitivities $\beta_{i,1} = 0.8$, $\beta_{i,2} = -0.2$.

Problem 4.4 (Fama-French Model and Carbon Premium) Consider the following Fama-French-three-factor-model.

Factor	Market	Size	Book
Premium	4.8%	3.6%	5.2%

- (a) Suppose there is an asset for which all factor sensitivities are positive. Characterize this asset.
- (b) Consider an asset where the sensitivities are $\beta_{i,M} = 0.9$, $\beta_{i,size} = -0.5$, $\beta_{i,book} = 0.6$. Predict its expected return if the risk-free rate is 1%.
- (c) Suppose now there is an asset whose sensitivities are $\beta_{i,M} = 0.8$, $\beta_{i,size} = 0.5$. The expected rate of return is 9.2%. Determine its sensitivity to the BTM factor.

Following Bolton & Kaspercyk (2021), we now consider an extension of the Fama-French model where carbon intensity is added as a factor to the model. Bolton & Kaspercyk (2021) find that there exist a *carbon premium*, i.e., more carbon-intensive industries have higher expected returns.

- (d) Explain why there might be a carbon premium.
- (e) Suppose we regress returns against the Fama-French factors and the logarithm of total emissions generated by the firm.

$$R_{i,t} = \alpha_i + \beta_{i,market} \cdot (R_{m,t} - r_f) + \beta_{i,size} \cdot SMB_t + \beta_{i,book} \cdot HML_t + \beta_{i,carbon} \log(E_{i,t}) + \varepsilon_{i,t},$$

where the emission factor carries a risk premium $\lambda_{carbon} = 1.5\%$. Suppose $\beta_{i,carbon} = 0.3$ (the other sensitivities might be affected by adding a new factor to the model). What does this mean in terms of expected returns, risk, and volatility?