Capital Markets and Asset Pricing
 Goethe Business School
 Summer Term 2022

 Dr. Christoph Hambel

 Dr. Christoph Hambel

 Problem Set 2

 Problem Set 2}

Problem 2.1 (State Pricing) Consider the following state pricing model with two assets (stock and risk-free asset) and two states:

$$
\binom{100}{98} \xrightarrow[p_{d}]{p_{u}}\binom{115}{100}
$$

(a) Calculate the prices of the elementary securities in this model.
(b) Is this market free of arbitrage? Is the market complete? Explain your answer.
(c) Determine the risk-free rate and the risk-neutral probabilities.
(d) Determine the price of a European put option on the stock with a strike price of 100.
(e) Provide the replication strategy for the put option from part (d).
(f) Determine the expected stock return under the risk-neutral probability measure. What do you observe?

Problem 2.2 (Option Pricing in a Two-Period Model) Consider a two-period binomial tree with two assets (stock and risk-free asset). Today's stock price is 100 . In each period, the stock price can either increase by 12% or decrease by 12%. A period corresponds to six months. The TSIR is flat and the annual interest rate is 4.04%.
(a) Determine the spot rate over one period ($=6$ months).
(b) Set up the binomial tree for the stock price.
(c) Calculate the risk-neutral probabilities.
(d) Determine the price of a European call option with a strike price of 90 .

Problem 2.3 (Black-Scholes Model) Consider a Black-Scholes model with the following parameters: the risk-free rate is $r=0.5 \%$, the volatility is $\sigma=22 \%$, and the current stock price is $S_{0}=95$.
(a) Determine the price of a European call option with strike price $K=100$ and maturity at $T=2$.
(b) Write down the replication portfolio for the option from part (a).
(c) Suppose you want to price a reverse convertible bond with $N=100, k=1$ paying coupons at a rate of $c=2 \%$ and maturing in 2 years. Suppose the term structure of interest rates is flat and there is no credit risk.
(d) Explain why the drift rate of the stock price μ does not show up in the Black-Scholes formula.

