Capital Markets and Asset Pricing
 Goethe Business School
 Summer Term 2022

 Dr. Christoph Hambel

 Dr. Christoph Hambel

 Problem Set 2

 Problem Set 2}

Problem 2.1 (State Pricing) Consider the following state pricing model with two assets (stock and risk-free asset) and two states:

(a) Calculate the prices of the elementary securities in this model.

Solution: We build the linear system

$$
\begin{aligned}
100 & =115 \pi_{u}+85 \pi_{d} \\
98 & =100 \pi_{u}+100 \pi_{d}
\end{aligned}
$$

Solving this system yields $\pi_{d}=0.4233, \pi_{u}=0.5567$.
(b) Is this market free of arbitrage? Is the market complete? Explain your answer.

Solution: This market is obviously free of arbitrage, since $\pi_{s}>0$ for all states s. It is complete since the prices of the elementary securities are unique.
(c) Determine the risk-free rate and the risk-neutral probabilities.

Solution: The risk-free rate is given by

$$
r_{f}=\frac{100}{98}-1=2.04 \%
$$

The risk-neutral probabilities are given by $\pi_{s}\left(1+r_{f}\right)$, i.e.,

$$
\begin{aligned}
& q_{d}=0.4233 \cdot 1.0204=43.20 \% \\
& q_{u}=0.5567 \cdot 1.0204=56.80 \% \text {. }
\end{aligned}
$$

(d) Determine the price of a European put option on the stock with a strike price of 100.

Solution: The put option profile is $P_{T}=\max \left(K-S_{T} ; 0\right)$. In the up state we get $P_{u}=\max (100-115 ; 0)=0$ (option will not be exercised), and in the down state, we get $P_{d}=\max (100-85 ; 0)=15$. Then, the option price is

$$
\begin{aligned}
P_{0} & =\frac{1}{1+r}\left(q_{u} P_{u}+q_{d} P_{d}\right) \\
& =\frac{1}{1.0204} \cdot 0.4320 \cdot 15 \\
& =6.35
\end{aligned}
$$

(e) Provide the replication strategy for the put option from part (d).

Solution: The replication strategy satisfies the following linear system, where φ_{S} denotes the number of stocks held, and φ_{B} the position in the risk-free assets, respectively:

$$
\begin{aligned}
15 & =85 \varphi_{S}+100 \varphi_{B} \\
0 & =115 \varphi_{S}+100 \varphi_{B}
\end{aligned}
$$

Therefore, $\varphi_{S}=-0.5$ (short-selling), $\varphi_{B}=0.575$.
The price of the put option can thus be calculated as

$$
\begin{aligned}
P_{0} & =S_{0} \varphi_{S}+B_{0} \varphi_{B} \\
& =100 \cdot(-0.5)+98 \cdot 0.575 \\
& =6.35
\end{aligned}
$$

(f) Determine the expected stock return under the risk-neutral probability measure. What do you observe?

Solution: The stock return in the two states are $R_{s}=\frac{S_{s}}{S_{0}}-1$, hence $R_{u}=\frac{115}{100}-1=15 \%$, $R_{d}=\frac{85}{100}-1=-15 \%$.

Expected return is

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[R_{s}\right] & =q_{u} R_{u}+q_{d} R_{d} \\
& =0.568 \cdot(-15 \%)+0.432 \cdot 15 \% \\
& =2.04 \%=r_{f}
\end{aligned}
$$

This result holds for all traded assets (and in all arbitrage-free models).

Problem 2.2 (Option Pricing in a Two-Period Model) Consider a two-period binomial tree with two assets (stock and risk-free asset). Today's stock price is 100 . In each period, the stock price can either increase by 12% or decrease by 12%. A period corresponds to six months. The TSIR is flat and the annual interest rate is 4.04%.
(a) Determine the spot rate over one period ($=6$ months).

Solution:

$$
(1+r(0.5) \cdot 0.5)^{2}=1+r(1)
$$

Therefore, $r(0.5)=2(\sqrt{1.0404}-1)=4 \%$ (annual rate). Consequently, the one-period rate is $r=2 \%$.
(b) Set up the binomial tree for the stock price.

Solution:

(c) Calculate the risk-neutral probabilities.

Solution: Of course, we can determine the risk-neutral probabilities by our usual three step procedure (i) determine state prices π_{s}; (ii) determine the risk-free rate for one period r; (iii) Calculate the risk-neutral probabilities $q_{s}=\pi_{s}(1+r)$.

However, there is a neat formula for the risk-neutral probabilities, which is given by $q_{u}=\frac{u-r}{u-d}$, where u denotes the return in the up-state and d the return in the down
state. Therefore:

$$
\begin{aligned}
& q_{u}=\frac{r-d}{u-d}=\frac{2 \%-(-12 \%)}{12 \%-(-12 \%)}=58.33 \% \\
& q_{u}=1-q_{d}=41.67 \%
\end{aligned}
$$

(d) Determine the price of a European call option with a strike price of 90 .

Solution: The payoff of the call option is $C_{T}=\max \left(S_{T}-K ; 0\right)$, i.e.,

$$
\begin{aligned}
C_{u u} & =\max (125.44-90 ; 0)=34.44 \\
C_{d u}=C_{u d} & =\max (98.56-90 ; 0)=8.56 \\
C_{d d} & =\max (77.44-90 ; 0)=0
\end{aligned}
$$

Consequently, the price of the option is

$$
\begin{aligned}
C_{0} & =\frac{1}{(1+r)^{2}}\left[q_{u}^{2} C^{u u}+2 q_{u} q_{d} C^{u d}+q_{d}^{2} C^{d d}\right] \\
& =\frac{1}{1.02^{2}}\left[(58.33 \%)^{2} \cdot 34.44+2(41.67 \%)(58.33 \%) \cdot 8.56\right] \\
& =15.26
\end{aligned}
$$

Problem 2.3 (Black-Scholes Model) Consider a Black-Scholes model with the following parameters: the risk-free rate is $r=0.5 \%$, the volatility is $\sigma=22 \%$, and the current stock price is $S_{0}=95$.
(a) Determine the price of a European call option with strike price $K=100$ and maturity at $T=2$.

Solution: The Black-Scholes formula for a call option reads

$$
C_{0}=S_{0} \Phi\left(d_{1}\right)-K \cdot \mathrm{e}^{-r T} \Phi\left(d_{2}\right), \quad P_{0}=C_{0}-S_{0}+K \cdot \mathrm{e}^{-r T}
$$

with

$$
d_{1}=\frac{\ln \left(S_{0} / K\right)+\left(r+0.5 \sigma^{2}\right) T}{\sigma \sqrt{T}}, \quad d_{2}=d_{1}-\sigma \sqrt{T}
$$

Substituting the numbers into this formula yields

$$
d_{1}=0.023, \quad d_{2}=-0.288
$$

Plugging these numbers into the cumulative distribution function of the standard normal distribution (Excel: "=NORM.S.DIST(D1;True)", or using a CDF table), we obtain

$$
\Phi\left(d_{1}\right)=0.509, \quad \Phi\left(d_{2}\right)=0.387
$$

Therefore, the Call price equals

$$
C_{0}=95 \cdot 0.509-100 \cdot \mathrm{e}^{-0.005 \cdot 2} \cdot 0.387=10.09
$$

(b) Write down the replication portfolio for the option from part (a).

Solution: The replication portfolio is $\varphi_{S}=\Phi\left(d_{1}\right)=0.509, \varphi_{B}=-\Phi\left(d_{2}\right) K=-38.7$
(c) Suppose you want to price a reverse convertible bond with $N=100, k=1$ paying coupons at a rate of $c=2 \%$ and maturing in 2 years. Suppose the term structure of interest rates is flat and there is no credit risk.

Solution: We split up the problem into two parts:
1st step: price the ordinary bond, i.e., determine the present value of the bond payments ignoring the option profile: $P V=2 \mathrm{e}^{-0.005}+102 e^{-2 \dot{0} .005}=102.98$.

2nd step: seller of the reverse convertible bond has the right (but not the obligation) to pay back the notional N or to deliver a number k of stocks, i.e., $k \cdot S_{T}$. Therefore, the holder of the reverse convertible bond is short in the put option with terminal payoff $P_{T}=\max \left(N-k \cdot S_{t} ; 0\right)$. In this problem $k=1$, i.e., a put option on this stock with strike price $N=100$. According to Problem (a) we can use the put-call parity (identical strike price, stock price, interest rate, volatility, and time-to-maturity):

$$
\begin{aligned}
P_{0} & =C_{0}-S_{0}+K \cdot \mathrm{e}^{-r \cdot T} \\
& =10.09-95+100 \mathrm{e}^{-0.005 \cdot 2} \\
& =14.10 .
\end{aligned}
$$

Hence, the price of the reverse convertible is $102.98-14.10=88.88$.
By contrast, the price of the corresponding convertible bond is $102.98+10.09=113.07$ (long call).
(d) Explain why the drift rate of the stock price μ does not show up in the Black-Scholes formula.

Solution: The Black-Scholes model exploits risk-neutral pricing, and under \mathbb{Q} all traded assets grow at the risk-free rate.

