Capital Markets and Asset Pricing
 Goethe Business School
 Summer Term 2022
 Dr. Christoph Hambel
 Problem Set 1

Problem 1.1 (Bond Pricing) You have a bond with notional $N=1,000$ which matures in 240 days (30/360 usance). The coupon is 6% and the clean price is 990 .
(a) Calculate the accrued interest and the dirty price. Explain the difference between clean and dirty bond prices.

Solution: The last coupon payment was 120 days ago. Hence, accrued interests are given by

$$
\text { Accrued interests }=C \cdot \frac{d}{B}=60 \cdot \frac{120}{360}=20 .
$$

Therefore, $P_{0}=990+20=1,010$.
(b) Assume capital market usance and redo problem (a).

Solution: Capital market usance is act/act. Therefore, the last coupon payment was 125 days ago.

$$
\text { Accrued Interests }=C \cdot \frac{d}{B}=60 \cdot \frac{125}{365}=20.55 .
$$

Therefore, $P_{0}=990+20.55=1,010.55$.

Problem 1.2 (Discretely compounded vs. Continuously) Current prices of zerocoupon bonds $(N=100)$ with maturities in 6 months, and twelve months are $P_{0}(T=$ $0.5)=99.8$, and $P_{0}(T=1)=98.4$
(a) Determine the discretely compounded spot rates $r(0.5), r(1)$, and the forward rate for an investment over the second period $f(0.5,1)$.

Solution: We are looking for discretely compounded interest rates for a time horizon below one year. The spot rates are thus given by

$$
P_{0}(T)(1+r(T) T)=N \quad \Longleftrightarrow \quad r(T)=\frac{1}{T}\left(\frac{N}{P_{0}(T)}-1\right)
$$

This yields $r(0.5)=0.40 \%, r(1)=1.63 \%$.
The no arbitrage condition for the forward rate is

$$
(1+r(0.5) \cdot 0.5)(1+f(0.5,1) \cdot 0.5)=(1+r(1) \cdot 1)
$$

The forward rate for the second period is thus $f(0.5,1)=2.85 \%$.
(b) Determine the corresponding continuously compounded interest rates.

Solution: The relation between discretely compounded and continuously compounded rates (for time horizons below 1 year) is

$$
\mathrm{e}^{r_{c} \cdot T}=1+r_{d} \cdot T \quad \Longleftrightarrow \quad r_{c}=\frac{1}{T} \log \left(1+r_{d} \cdot T\right)
$$

Therefore,

$$
\begin{aligned}
r_{c}(1 / 2) & =0.40 \% \\
r_{c}(1) & =1.61 \% \\
f_{c}(0.5,1) & =2.83 \%
\end{aligned}
$$

Problem 1.3 (TSIR and Bond Pricing) Suppose the following bond data of German Bundesanleihen is given

	T	P_{0}	c	N
1st Bond	1	101.15	1.0%	100
2nd Bond	2	98.00	2.0%	100
3rd Bond	3	99.50	1.5%	100

(a) Back out the spot and forward rates from this bond data. What kind of term structure do you get? What do you observe?

Solution: We use the bootstrapping technique:
1st Bond: $101.15=101 \cdot \mathrm{e}^{-r(1)}$. Therefore,

$$
r(1)=-\log \left(\frac{101.15}{101}\right)=-0.00148=-0.15 \% .
$$

2nd bond: $98=2 \cdot \mathrm{e}^{-r(1)}+102 \cdot \mathrm{e}^{-2 r(2)}$. Therefore,

$$
r(2)=-\frac{1}{2} \log \left(\frac{98-2 \cdot \mathrm{e}^{0.00148}}{102}\right)=3.03 \%
$$

3rd bond: $99.5=1.5 \cdot \mathrm{e}^{-r(1)}+1.5 \cdot \mathrm{e}^{-2 r(2)}+101.5 \cdot \mathrm{e}^{-3 r(2)}$. Therefore,

$$
r(3)=-\frac{1}{3} \log \left(\frac{99.5-1.5 \cdot \mathrm{e}^{0.00148}-1.5 \cdot \mathrm{e}^{-2 \cdot 0.0303}}{101.5}\right)=1.65 \%
$$

The term structure is hump-shaped.
Forward rates:

$$
\begin{aligned}
& f(0)=r(1)=-0.15 \% \\
& f(1)=2 r(2)-r(1)=6.21 \% \\
& f(2)=3 r(3)-r(1)-r(2)=2.07 \%
\end{aligned}
$$

Observation: term structure of forward rates is steeper than term structure of spot rates.
(b) Determine the current yield, simple redemption yield, and yield-to-maturity for the second bond. Explain the differences between these yield concepts.

Solution: $P_{0}=98, N=100, C=2$.

$$
\begin{aligned}
y_{\text {current }} & =\frac{C}{P_{0}}=\frac{2}{98}=2.04 \% \\
y_{\text {simple }} & =\frac{C}{P_{0}}+\frac{1}{T} \frac{N-P_{0}}{P_{0}}=2.04 \%+\frac{1}{2} \cdot \frac{100-98}{98}=3.06 \%
\end{aligned}
$$

The yield-to-maturity is given by the solution to the equation

$$
\begin{aligned}
P_{0} & =\sum_{t=1}^{T} C \mathrm{e}^{-y t}+N \mathrm{e}^{-y T} \\
98 & =2 e^{-y}+102 e^{-2 y}
\end{aligned}
$$

To solve this equation, we substitute $x=e^{-y}, x^{2}=e^{-2 y}$. This leads to the following quadratic equation:

$$
0=-98+2 x+102 x^{2}
$$

Therefore,

$$
\begin{aligned}
x_{1 / 2} & =\frac{-2 \pm \sqrt{2^{2}+4 \cdot 102 \cdot 98}}{2 \cdot 102} \\
x_{1} & =0.9704, \quad x_{2}=-0.9900
\end{aligned}
$$

Resubstitute $x=e^{-y}$, i.e., $y=-\log (x)$. Therefore, x_{2} does not deliver a real solution. YTM is given by $y=-\log (0.9704)=3 \%$.
(c) Suppose there is another German Bundesanleihe with a coupon rate of 3% maturing in 3 years. Determine its arbitrage-free price.

Solution:

$$
P_{0}=3 \cdot \mathrm{e}^{0.00148}+3 \cdot \mathrm{e}^{-2 \cdot 0.0303}+103 \cdot \mathrm{e}^{-3 \cdot 0.0165}=103.85
$$

(d) What would you do if this bond were trading at 102?

Solution: This bond would be undervalued. There is an arbitrage opportunity: Buy the bond at a price of 102 and sell the replication portfolio, whose price is 103.85 . Then, you make an arbitrage profit of 1.85 .
(e) What would be different if the bonds were US Treasuries? Write down the pricing equations using spot rates.

Solution: US Treasuries pay coupons semi-anually. The pricing equation for a bond with maturity T (expressed in years) is

$$
P_{0}=\sum_{t=1}^{2 T} \mathrm{e}^{-r(t / 2) \frac{t}{2}} C+\mathrm{e}^{-r(T) T} N
$$

Here, we cannot back out the spot rates since we do not observe bond prices for $T \in$ \{0.5, 1.5, 2$\}$

Problem 1.4 (Interest Rate Exposure) We consider a coupon bond with a coupon rate of 2% per annum, a notional of 100 euros, and a time to maturity of 3 years. Coupons are paid annually. Its continuously compounded yield-to-maturity is 1%.
(a) Determine the bond's price P_{0}, duration D, and convexity Γ.

Solution:

$$
\begin{aligned}
& P_{0}=\sum_{t=1}^{T} C \mathrm{e}^{-y t}+N \mathrm{e}^{-y T} \\
& P_{0}=2 e^{-0.01}+2 e^{-2 \cdot 0.01}+102 e^{-3 \cdot 0.01} \\
& P_{0}=102.93
\end{aligned}
$$

$$
\begin{aligned}
D & =\frac{\sum_{t=1}^{T} t \cdot C \mathrm{e}^{-y t}+T \mathrm{e}^{-y T}}{P_{0}} \\
D & =\frac{1 \cdot 2 e^{-0.01}+2 \cdot 2 e^{-2 \cdot 0.01}+3 \cdot 102 e^{-3 \cdot 0.01}}{102.93} \\
D & =2.9425 \\
\Gamma & =\frac{\sum_{t=1}^{T} t^{2} \cdot C \mathrm{e}^{-y t}+T^{2} \mathrm{e}^{-y T}}{P_{0}} \\
\Gamma & =\frac{1^{2} \cdot 2 e^{-0.01}+2^{2} \cdot 2 e^{-2 \cdot 0.01}+3^{2} \cdot 102 e^{-3 \cdot 0.01}}{102.93} \\
\Gamma & =8.7509
\end{aligned}
$$

(b) What change in the yield-to-maturity does the duration predict if the price goes down by $\$ 1$?

Solution:

$$
\begin{aligned}
\Delta P & \approx-D \cdot P_{0} \cdot \Delta y \\
\Delta y & \approx-\frac{\Delta P}{D \cdot P_{0}} \\
\Delta y & \approx-\frac{-1}{2.9425 \cdot 102.93}=\frac{1}{2.9425 \cdot 102.93} \\
\Delta y & \approx 0.0033=0.33 \%
\end{aligned}
$$

(c) Suppose you observe rising interest rate and the yield-to-maturity goes down by $80 \mathrm{bps}=0.8 \%$. Predict the price change using (i) duration only, (ii) duration and convexity, and compare it to (iii) the true price change.

Solution: (i) Duration only, $\Delta y=-0.008$:

$$
\begin{aligned}
& \Delta P \approx-D \cdot P_{0} \cdot \Delta y \\
& \Delta P \approx-2.9425 \cdot 102.93 \cdot(-0.008) \\
& \Delta P \approx 2.42
\end{aligned}
$$

(ii) Duration and convexity:

$$
\begin{aligned}
& \Delta P \approx-D \cdot P_{0} \cdot \Delta y+\frac{1}{2} \Gamma \cdot P_{0} \cdot \Delta y \\
& \Delta P \approx 2.42+0.5 \cdot 8.7509 \cdot 102.93 \cdot(-0.008)^{2} \\
& \Delta P \approx 2.45
\end{aligned}
$$

(iii) True change: $y_{\text {new }}=y_{\text {old }}+\Delta y=0.002$

$$
\begin{aligned}
& P_{0}=\sum_{t=1}^{T} C \mathrm{e}^{-y_{\text {new }} t}+N \mathrm{e}^{-y_{\text {new }} T} \\
& P_{0}=105.38
\end{aligned}
$$

Therefore, $\Delta P=105.38-102.93=2.45$
(d) Suppose you hold an equally weighted portfolio of the bond above and a zero-coupon bond with a maturity in 5 years and a current price of 89 . Determine the portfolio duration and convexity.

Solution: For the zero bond, we have $D=T, \Gamma=T^{2}$, i.e.,

$$
D_{1}=5, \quad \Gamma_{1}=25, \quad D_{2}=2.94, \quad \Gamma_{2}=8.75
$$

The portfolio is equally weighted, i.e., $w_{1}=w_{2}=0.5$. Therefore,

$$
\begin{aligned}
D_{P} & =0.5 \cdot 5+0.5 \cdot 2.94=3.97 \\
\Gamma_{P} & =0.5 \cdot 25+0.5 \cdot 8.75=16.87
\end{aligned}
$$

