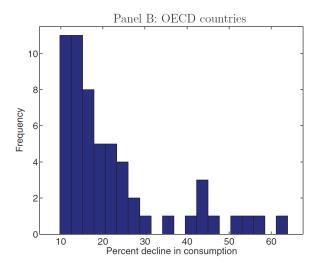
Option Pricing in Partial Equilibrium

- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- Disaster Risk and Asset PricingMotivation and Model Setup
 - Asset Pricing

- In reality, consumption and stock market dynamics are not as smooth as the Lucas model suggests.
- The frameworks we have studied so far do not take into account the possibility of rare disasters that hit the economy with a slam.
- Examples:
 - Corona Crash of Spring 2020
 - Financial Crisis of 2008
 - Wall Street Crash of 1929
 -
- All these crashs destroyed a lot of money within some few trading days and had a significant impact on consumption.
- We study a simple model with instantaneous disaster shocks following Rietz (1998), Barro (2006, 2009).

Motivation



Selected disasters in history, see Wachter (2013), original data from Barro and Ursa (2008).

Christoph Hambel

Barro (2006, 2009) – Model Setup

• Endowment economy with disaster risk component

$$\Delta c_{t+1} = \mu_c + \sigma_c \eta_{c,t+1} + \nu_{t+1}$$

• $\eta_{c,t+1} \sim \mathcal{N}(0,1)$, i.i.d. and ν_{t+1} satisfies

$$\mathbb{P}(\nu_{t+1} = \log(1 - b_{t+1})) = p, \qquad \mathbb{P}(\nu_{t+1} = 0) = 1 - p$$

where b_{t+1} is i.i.d.

• Disaster probability: p

• Loss if a disaster hits the economy: b_{t+1}

$$\begin{split} \mathcal{C}_{t+1} &= \mathcal{C}_t \mathrm{e}^{\mu_c + \sigma_c \eta_{c,t+1} + \nu_{t+1}} \\ &= \begin{cases} \mathcal{C}_t \mathrm{e}^{\mu_c + \sigma_c \eta_{c,t+1}}, \quad \checkmark & \text{in normal times} \\ \mathcal{C}_t \mathrm{e}^{\mu_c + \sigma_c \eta_{c,t+1}} (1 - b_{t+1}), & \text{if a disaster hits} \end{cases} \end{split}$$

Christoph Hambel

• Expected consumption growth

$$\mathbb{E}_t \left[\frac{C_{t+1}}{C_t} \right] = \mu_c + \frac{1}{2} \sigma_c^2 - \rho \mathbb{E}_t [b_{t+1}]$$

- Rare but heavy disasters: Barro (2006, 2009) uses
 - expected growth rate without disasters $\mu_c=2.5\%$
 - consumption volatility in normal times $\sigma_c = 2\%$
 - disaster probability p = 1.7%
 - expected disaster size $\overline{b} = \mathbb{E}_t[b_{t+1}] = 29\%$
- Therefore, expected growth rate is $\mathbb{E}_t \left[\frac{C_{t+1}}{C_t} \right] \approx 2\%$.
- Alternative calibrations can be found in Wachter (2013), Barro and Jin (2011), among others.

BkY, ckc $M_c = 27$

Option Pricing in Partial Equilibrium

- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- Disaster Risk and Asset Pricing
 Motivation and Model Setup
 - Asset Pricing

• Consider an investor with CRRA utility (Barro 2006):

$$u(C)=\frac{1}{1-\gamma}C^{1-\gamma}.$$

- Consumption growth is i.i.d., so wealth-consumption ratio constant, and everything works along the lines of Section 2.
- Standard Procedure
 - Write down the Euler equation and determine the pricing kernel
 - Derive the risk-free interest rate.
 - Derive the equity premium.
 - Determine the wealth-consumption ratio.
- This procedure also works for recursive utility (Barro 2009).

• Euler Condition remains unchanged in the CRRA case,

$$\mathbb{E}_t \left[e^{-\delta} \frac{u_c(C_{t+1})}{u_c(C_t)} R_t \right] = 1.$$

For the risk-free asset

$$\mathrm{e}^{-r_t^f} = \mathbb{E}_t \Big[\mathrm{e}^{-\delta} \frac{u_c(C_{t+1})}{u_c(C_t)} \Big]$$

Mt. t+1

• Exploiting a first order approximation ($e^{-p} \approx 1 - p$):

$$r_t^f = \delta + \gamma \mu_c - \frac{1}{2} \gamma^2 \sigma_c^2 - p \left(\mathbb{E}_t \left[\left(1 - b_{t+1} \right)^{1-\gamma} \right] - 1 \right)$$

- blue terms: standard
- red terms: disaster risk reduces the interest rate

Equity premium

$$\operatorname{rp}_t^i = \gamma \sigma_c^2 + \rho \mathbb{E}_t \big[b_{t+1} \big((1 - b_{t+1})^{1 - \gamma} - 1 \big) \big]$$

- blue terms: standard
- red terms: disaster risk boosts the equity premium
- The benchmark calibration generates a high equity premium and a low real interest rate even with CRRA utility and a moderate degree of risk aversion in the range between $\gamma = 3$ and $\gamma = 4$.

Possible Model Extensions

• The model is still very simplistic.

- equity premium is constant.
- interest rates is constant.
- financial crises are point events.
- CRRA implies that an increase in uncertainty (σ , p, or b_{t+1}) for given expected consumption growth implies a higher price-dividend ratio.

- 7

- It can be adjusted in various dimension to account for
 - recursive preferences (e.g., Barro 2009; Barro and Jin 2011)
 - long-run risk and stochastic volatility (as in Bansal and Yaron 2004)
 - time-varying disaster risk (e.g., Wachter 2013)
 - periods of crisis (e.g., Branger et al. 2016)
 - climate-induced disaster shocks (e.g., Hambel et al. 2020)

- ...

Possible Model Extensions

$$\begin{split} & \underbrace{\mathsf{Wachter 201S}, \ \mathcal{JF}}{\mathsf{\Delta}\mathsf{P}_{t+1}} = \theta(\mathcal{P}_t - \overline{\mathcal{P}}) + \nabla_{\mathcal{P}} \mathcal{P}_t \mathcal{\eta}_{t-1}^{\mathcal{P}}} \\ & \overline{\mathsf{\Delta}\mathsf{E}} \to 0 \quad \mathsf{d}\mathcal{\lambda}_t = \theta(\mathcal{\lambda}_1 - \overline{\mathcal{\lambda}}) + \nabla_{\mathcal{A}} \mathcal{I}_{\mathcal{A}_t} \, \mathsf{d}\mathcal{W}_t \\ & \mathcal{\lambda}_t > 0 \quad \mathsf{a.s.} \end{split}$$

Christoph Hambel

Advanced Financial Economics

Possible Model Extensions

Ac++1 = µb + √b Mt+1 + 22+1 if b Actin = Mr + Jr Mton + Do il r T_{t} , $\lambda_{t} = \lambda_{o} + \lambda_{i} T_{t}$ Handul et al 2020 WP Undows & repupadas (2019) $d\lambda_t = \mathcal{O}\left(\lambda_t - (\lambda_0 + \lambda_n T)\right) dt + \sqrt{\lambda_t} d\omega$