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Course Information

Lecturers:

Christoph Hambel (financial modeling and derivative pricing)
Nikolaus Schweizer (numerical methods and risk measures)

This course ...

... provides an introduction to financial modeling, pricing, and risk
management beyond the Black-Scholes framework
... requires some knowledge from mathematics and finance, especially
from stochastic calculus (Wiener process, Itô’s Lemma, Change of
measure, Girsanov’s Theorem, ...)
... contains a guest lecture by (tba)

Grading:

Exam 70%
Two Assignments (15% each)
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What to expect?

What can you expect from us? We will...

... timely provide the learning material on Canvas

... also upload the slides with hand-written complements (some slides
are intentionally blank)
... illustrate the lecture by examples
... provide problem sets and a sample exam to practice the material
... be available for questions
... offer a virtual Q&A session after the last lecture

What will we expect from you? You should ...

... be well-prepared when you come to the lecture

... actively participate in the lecture

... take the opportunity and ask us questions during the classes
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Recommended Literature

We do not make any book the mandatory reading for this course.
However, we highly recommend the following textbooks:

Schumacher, J.M.: Introduction to Financial Derivatives: Modeling,
Pricing and Hedging (Open Press TiU)
Björk, T.: Arbitrage Theory in Continuous Time (Oxford)
Glasserman, P.: Monte-Carlo Methods in Financial Engineering
(Springer)

This course follows the notation in Schumacher (2020), which
contains a lot of exercises.
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Preliminary Schedule

Please notice that the plan can change!

Mon, 28.08.2023, 12:45, WZ105

Mon, 04.09.2023, 12:45, WZ105

Tue, 05.09.2023, 14:45, CUBE 218

Mon, 11.09.2023, 12:45, WZ105

Mon, 18.09.2023, 12:45, WZ105

Tue, 19.09.2023, 14:45, CUBE 218

Mon, 25.09.2023, 12:45, WZ105

Mon, 02.10.2023, 12:45, WZ105

Tue, 03.10.2023, 14:45, CUBE 218

Mon, 09.10.2023, 12:45, WZ105

Tue, 10.10.2023, 14:45, CUBE 218
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Structure of the Course (First Half)

1 Introduction to Financial Modeling

Discrete vs. Continuous Time Modeling
Fundamentals from Stochastic Calculus

2 Continuous time: Generic State Space Model

Framework
No Arbitrage and the First FTAP
The Numéraire-dependent Pricing Formula
Replication and the Second FTAP
The PDE Approach

3 Contingent Claim Pricing

Black-Scholes Revisited
Option Pricing in Incomplete Markets
Models with Dividends
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Structure of the Course (First Half)

4 Fixed Income Modeling

Bonds and Yields
Interest Rates and Interest Rate Derivatives
Short Rate Models for the TSIR
Empirical Models
The Heath-Jarrow-Morton Framework
LIBOR Market Model and Option Pricing

5 A Brief Introduction to Credit Risk

Reduced-Form Modeling
Merton’s Firm Value Model
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Part I

Introduction to Financial Modeling
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Table of Contents

1 Discrete vs. Continuous Time Modeling

2 Fundamentals from Stochastic Calculus
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Time

Discrete time with time horizon T :

t ∈ {0,∆t, 2∆t, . . . , (n − 1)∆t, n∆t︸︷︷︸
=T

} = {i∆t | i = 0, . . . , n}

Continuous time as a limit of discrete time (∆t → 0 as n → ∞):

t ∈ [0,T ]
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Modeling in Discrete Time: First Idea

Risk-free asset (bond) paying a constant interest rate:

Bt+∆t = Bt(1 + r ·∆t) ⇐⇒ ∆Bt+∆t

Bt
= r ·∆t

Risky asset (stock):

St+∆t = St(1 + µ ·∆t + σ · νt+∆t ·
√
∆t), νt+∆t ∼i .i .d . (0, 1)

Return:

∆St+∆t

St
= µ ·∆t + σ · νt+∆t ·

√
∆t

Problem: Returns are not necessarily bounded from below by -1 and
thus asset prices can be negative.
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Log Returns

Way out? → Model log returns, Lt , and take the exponential:

St+∆t = Ste
∆Lt+∆t

Risk-free asset (bond):

Bt+∆t = Bte
r ·∆t ⇐⇒ r∆t = ln

(Bt+∆t

Bt

)
= ∆ lnBt+∆t

Risky asset (stock):

∆Lt+∆t = ln(St+∆t)− ln(St) =
(
µ− 1

2
σ2

)
∆t + σ · νt+∆t ·

√
∆t

Now, we take the limit to continuous time, i.e., we increase the
number of periods (n → ∞) while keeping the time horizon constant,
i.e., ∆t = T

n → 0.
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Log Returns

ST = S0

n−1∏
i=0

e∆L(i+1)∆t

= S0 exp
{ n−1∑

i=0

[(
µ− 1

2
σ2

)
∆t + σ · ν(i+1)∆t ·

√
∆t

]}
= S0 exp

{(
µ− 1

2
σ2

)
T + σ ·

√
∆t ·

n∑
i=1

νi∆t

}
= S0 exp

{(
µ− 1

2
σ2

)
T + σ ·

√
T · 1√

n

n∑
i=1

νi∆t

}
According to the CLT: 1√

n

∑n
i=1 νi∆t →d ZT ∼ N (0, 1) as n → ∞, i.e.,

ST →d S0 exp
{(
µ− 1

2
σ2

)
T + σ ·

√
T · ZT

}
Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 13 / 259



From Discrete to Continuous Time

In the limit, the log return is normally distributed:

LT = L0 +
(
µ− 1

2
σ2

)
T + σ ·

√
T · ZT

Consequently, in the limit ST is log-normally distributed with

mean: E[ST ] = S0e
µ·T

variance: var(ST ) = S2
0 e

2µ·T [eσ
2T − 1]

Does this mean that any discrete-time model converges to a
log-normal distribution?

How can we model asset prices in continuous time?
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Trading in Discrete Time

Assume that there is a frictionless financial market (i.e., no taxes, no
transaction costs, no short-selling constraints, ...)

Throughout the lecture we will be using vector notation:

m : number of basic assets

Yt : m-dimensional vector of asset prices at time t

ϕt : vector of number of units of assets held at time t

Portfolio value generated by the portfolio strategy (or trading
strategy) ϕ:

Vt = ϕ′tYt .

A portfolio strategy ϕ is self-financing if trading neither generates nor
destroys money, i.e.,

ϕ′t−∆tYt = ϕ′tYt .
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Trading in Discrete Time

Suppose that rebalancing takes place at times 0 < t1 < · · · < tn = T ,
i.e., tj = j∆t.

VT = V0 +
n−1∑
j=0

(Vtj+1 − Vtj ) (telescope rule)

= V0 +
n−1∑
j=0

ϕ′tj (Ytj+1 − Ytj ) (self-financing portfolio)

= V0 +
n−1∑
j=0

ϕ′tj ∆Ytj+1 .

The sum
∑n−1

j=0 ϕ
′
tj
∆Ytj+1 converges in some sense to the stochastic

integral
∫ T
0 ϕ

′
t dYt even if the integrator is of infinite variation.

The continuous-time version of self-financing is VT = V0 +
∫ T
0 ϕ

′
t dYt .
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From Discrete Time to Continuous Time

We need adequate tools for modeling asset prices in continuous time
that can be interpreted along the lines of

(1)
∆Bt+∆t

Bt
= r ·∆t

(2)
∆St+∆t

St
= µ ·∆t + σ · νt+∆t ·

√
∆t

and that preserve the limit distribution of the stock return.

Replace (1) by an ODE and (2) by an SDE:

(1′)
dBt

Bt
= rdt

(2′)
dSt
St

= µdt + σdWt

Replace the self-financing condition ϕ′t−∆tYt = ϕ′tYt by

VT = V0 +
∫ T
0 ϕ

′
t dYt for an adequately defined stochastic integral.
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Table of Contents

1 Discrete vs. Continuous Time Modeling

2 Fundamentals from Stochastic Calculus
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Stochastic Processes

Consider a filtered probability space (Ω,A, (Ft)t≥0,P)
Ω denotes the state space.
A ⊂ 2Ω denotes a sigma algebra that contains all events for which
probabilities can be assigned.
(Ft)t≥0 denotes the filtration, which models the set of information
available at time t.
P : A → [0, 1] is a probability measure, which we refer to as real-world
probability measure.

A stochastic process X is a collection of random variables (Xt)t≥0

indexed by time.

Remarks:
Throughout the course, we assume that all processes are continuous
(i.e., “no jumps” a.s.) and adapted (i.e., “realization Xt is known at
time t”). Formulas become more involved if we relax this assumption.
I will avoid technical terms (e.g., measurability, integrability), but focus
on economic interpretations. I will rather assume that all processes
satisfy all relevant conditions.
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Brownian Motion

Definition (Brownian Motion)

A one-dimensional (standard) Brownian motion (aka Wiener Process) is a
stochastic process W = (Wt)t≥0 such that W0 = 0 a.s. and

Wt −Ws ∼ N (0, t − s) for 0 ≤ s < t (stationary increments).

Wt −Ws is independent of Wu −Wv for 0 ≤ v < u ≤ s < t
(independent increments).

A k-dimensional standard Brownian motion W = (W1, . . . ,Wk) is a
k-dimensional vector of independent Brownian motions.

Notice that the paths of a Brownian motion are continuous (a.s.) but
nowhere differentiable. In particular, the paths of Brownian motion
have infinite length on any interval (“infinite variation”).
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Brownian Motion
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Martingales

Definition (Martingale)

A stochastic process Z = (Zt)t≥0 is said to be a martingale if “the best
estimate of the future is the present”, i.e.,

Es [Zt ] = Zs t ≥ s

Martingales relate to “fair games” and are often thought of as
“purely stochastic” processes, that is, containing no trend or being
constant in expectation..

Example: Brownian motion is a martingale.

There are many generalizations of martingales, e.g.,

Submartingales (“non-decreasing in expectation”)
Supermartingales (“non-increasing in expectation”)
Local martingales (“if stopped process is a martingale”)
Semimartingales (“local martingale + process of finite variation”)
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Itô Integral

The stochastic integral (a.k.a. Itô integral) is defined by∫ T

0
Xt dZt = lim

n→∞

n∑
j=0

Xtj (Ztj+1 − Ztj )

where Z is a semimartingale, X is an adapted process, and the
stochastic limit is taken in the sense of refining partitions (i.e.,
intermediate points t0, t1, . . . , tn become more and more dense on the
interval [0,T ] as n tends to infinity).

The construction of the limit and prove of convergence is not trivial,
since in general the integrator is of infinite variation.

Such a limit does not necessarily exist pathwise.

Note: by contrast to the Riemann-Stieltjes integral, the integrand is
evaluated at the left end tj .

The stochastic integral is itself a random variable.
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Stochastic Differential Equation

Definition (Stochastic Differential Equation)

Let W be a standard Brownian motion. An expression of the form

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

for given functions µ(t,Xt) (drift) and σ(t,Xt) (volatility) is called a
stochastic differential equation (SDE) driven by Brownian motion and
should be understood as a short-hand notation for the integral equation

Xt = X0 +

∫ t

0
µ(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs .

If the drift µ(t,Xt) is zero, then the solution is a martingale.

This definition can be generalized to SDEs driven by jump processes
(e.g., Poisson processes).
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Quadratic (Co-)Variation

Let X , Y be two real-valued stochastic processes, then their
quadratic covariation process is defined as

[X ,Y ]t = lim
∆t→0

t∑
j=0

(Xtj+1 − Xj)(Ytj+1 − Yj)

The quadratic variation process of X is defined by

[X ]t = [X ,X ]t

Rules for quadratic (co)-variation:

linearity in both arguments
[X , g ] = 0 if g is a continuous function of bounded variation
d[W1,W2] = ρ dt for BMs with correlation coefficient ρ; d[W ] = dt
if dX = µX dt + σX dW1 and dY = µY dt + σY dW2, then

d[X ,Y ] = σXσY ρ dt, d[X ] = σ2
X dt
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Itô’s Lemma: Univariate Versions

Theorem (Itô’s Lemma for continuous semimartingales)

Let X be a continuous real-valued semimartingale, and f : R+ × R → R is
a C 1,2-function, then

df (t,Xt) =
∂

∂t
f (t,Xt) dt +

∂

∂x
f (t,Xt) dXt +

1

2

∂2

∂x2
f (t,Xt) d[X ,X ]t .

Theorem (Itô’s Lemma for Itô processes)

Let X be an Itô process dXt = µXdt + σXdWt , and f : R+ × R → R is a
C 1,2-function, then

df (t,Xt) =
[ ∂
∂t

f (t,Xt) +
∂

∂x
f (t,Xt)µX +

1

2

∂2

∂x2
f (t,Xt)σ

2
X

]
dt

+
∂

∂x
f (t,Xt)σ dWt .
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Problem: Black Scholes Model

Problem: Derive the stock price in the Black-Scholes model and show
that it is strictly positive almost surely.

Solution:
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Problem: Black Scholes Model
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Geometric Brownian Motion
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Itô’s Lemma: Multivariate Version

Theorem (Itô’s Lemma for continuous semimartingales)

Let X = (X 1
t , . . . ,X

n
t )t≥0 be a continuous Rn-valued semimartingale, and

f : R+ × Rn → R is a C 1,2-function, then

df (t,Xt) =
∂

∂t
f (t,Xt) dt +

n∑
i=1

∂

∂xi
f (t,Xt) dX

i
t

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
f (t,Xt) d[X

i ,X j ]t .

Special Case: f (X ,Y ) = XY : Itô product rule:

d(XY )t = XtdYt + YtdXt + d[X ,Y ]t
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Itô’s Lemma: Multivariate Version

Theorem (Itô’s Lemma for multivariate Itô processes)

Let W be a k-dimensional standard Brownian motion, X be a Rn-valued
Itô process with dynamics

dXt = µXdt + σXdWt

for sufficiently smooth functions µX : R+ × Rn → Rn and
σX : R+ × Rn → Rn×k . Let f : R+ × Rn → R is a C 1,2-function with
gradient ∇f (t,Xt) and Hessian matrix Hf (t,Xt), then

df (t,Xt) =
[ ∂

∂t
f (t,Xt)︸ ︷︷ ︸
∈R

+∇f (t,Xt)︸ ︷︷ ︸
∈Rn

· µX︸︷︷︸
∈Rn

+
1

2
tr
(
Hf (t,Xt)︸ ︷︷ ︸

∈Rn×n

σX︸︷︷︸
∈Rn×k

σ′X︸︷︷︸
∈Rk×n

)]
dt

+∇f (t,Xt)︸ ︷︷ ︸
∈Rn

σX︸︷︷︸
∈Rn×k

dWt︸︷︷︸
∈Rk
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Example: Relative Asset Prices
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Change of Measure

Definition (Equivalent Probability Measure)

Two probability measures P and Q are said to be equivalent, P ∼ Q, if
both measures possess the same null sets, i.e., for all events A ∈ A

P(A) = 0 ⇐⇒ Q(A) = 0.

In our pricing applications, we consider equivalent probability
measures that are associated to a numéraire.

A numéraire is any self-financing portfolio ϕ that generates strictly
positive wealth V ϕ

t = ϕ′tYt

A probability measure Q ∼ P is said to be an equivalent martingale
measure if for every asset with price process Y i (i = 1, . . . ,m) the

price expressed in terms of the numéraire V ϕ
t is a martingale under Q.
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Change of Measure – Radon-Nikodym Theorem

The following theorem states how to switch between two equivalent
probability measures.

Theorem (Radon-Nikodym)

Let P ∼ Q denote two equivalent probability measures, then there exists a

unique (a.s.), positive random variable θ = dQ
dP such that

EQ[X ] = EP[θX ], EP[X ] = EQ
[X
θ

]
for all real-valued random variables X . In particular,

Q[A] = EP[θ 1A]

θ is called the Radon-Nikodym density (or Radon-Nikodym derivative).

Critical Question: How can we perform a change of measure if the
market is driven by Brownian motions?
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Girsanov Theorem

Theorem (Girsanov)

Suppose that a measure Q is defined in terms of a measure P by the
Radon-Nikodym process (θt)t≥0, with

dθt = −λtθt dWt

where W is a Brownian motion under P and λ is a continuous adapted
process. Then the process W̃ defined by W̃0 = 0 and

dW̃t = λt dt + dWt

is a Brownian motion under Q.

This works as well for vector BMs; in this case, write

dθt = −θtλ′t dWt , dW̃t = λt dt + dWt .
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Some Remarks

The stochastic differential equation dθt = −λtθt dWt has a unique
solution, the Radon-Nikodym process:

θt = E(λ)t = exp
(
−
∫ t

0
λsdWs −

1

2

∫ t

0
λ2sds

)
The process E(λ) is called the stochastic exponential or Doléans-Dade
exponential of λ.

The Radon-Nikodym derivative is given by

θT = exp
(
−
∫ T

0
λsdWs −

1

2

∫ T

0
λ2sds

)
The Radon-Nikodym process is a P-martingale, i.e.,

θt = Et [θT ].
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Part II

Generic State Space Model

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 37 / 259



Table of Contents
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5 The Numéraire-dependent Pricing Formula

6 Replication and the Second FTAP

7 The PDE Approach
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Generic State Space Model

We consider a general framework with n state variables and m assets

The state variables may include asset prices (in this case Xi = Yi )
such as

Bonds
Commodities
Money market account
Stocks
. . .

But they can also model non-tradable financial or economic factors,
such as

Interest rates
Volatility
Expected rate of return
Inflation
GDP growth
. . .

The model is driven by k risk sources (Brownian motions).
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Generic State Space Model

General continuous-time financial market model driven by Brownian
motion:

Generic State Space Model

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

Yt = πY (t,Xt).

Notation:

Wt : k-dimensional standard Brownian motion

Xt : n-dimensional Markov process of state variables

Yt : m-dimensional process of asset prices at time t

µX (t,Xt) : vector of length n

σX (t,Xt) : matrix of size n × k

πY (t,Xt) : vector of length m

t : time, measured in years
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Asset Dynamics

Given the functions µX , σX , and πY , we can determine the asset
dynamics dY on the basis of Itô’s lemma.

Fix a component C = Yi (“claim”) for some i = 1, . . . ,m from the
vector of asset prices Y = (Y1, . . . ,Ym)

′.

Define the real function πC = πY ,i . Itô’s lemma yields (see slide 31).

dCt = µC (t,Xt) dt + σC (t,Xt) dWt

with

µC =
∂πC
∂t

+∇πC · µX +
1

2
tr
(
HπC σXσ

′
X

)
=
∂πC
∂t

+
n∑

i=1

∂πC
∂xi

µX ,i +
1

2

n∑
i=1

n∑
j=1

k∑
ℓ=1

∂2πC
∂xi∂xj

σX ,i ,ℓσX ,j ,ℓ

σC = ∇πC σX .
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Example: Black-Scholes Model

Two assets: money market account M and stock S

dSt = St [µdt + σdWt ]

dMt = Mtrdt

This can be written in standard state space form by letting the state
variable = asset prices be of dimension n = m = 2, with components
St and Mt .

There is only one source of uncertainty (k = 1).

The vector functions µX , σX , and πY are given by

µX (t, St ,Mt) =

[
µSt
rMt

]
, σX (t,St ,Mt) =

[
σSt
0

]
,

πY (t,St ,Mt) =

[
St
Mt

]
.
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Stochastic Interest Rates: Vasicek Model / CIR Model

A Vasicek process or Ornstein-Uhlenbeck process is a process of the
form

dXt = a(b − Xt) dt + σ dWt .

Properties: Xt fluctuates around the mean-reversion level b. The
parameter a determines the mean-reversion speed. We will see later
on that this process is normally distributed.

Vasicek processes are commonly used to model rates such as interest
rates, inflation rates, exchange rates, (expected) growth rates, etc.

The Vasicek process has the (dis-)advantage that it can take positive
and negative values.

A prominent alternative is the Cox-Ingersoll-Ross process

dXt = a(b − Xt) dt + σ
√
Xt dWt ,

which can only take positive values, but has a very complicated
distribution (non-central χ2).
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Stochastic Interest Rates: Vasicek / CIR Model
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Model with Stochastic Interest Rates

The short rate follows a Vasicek process:

dSt = µSt dt + σSSt dW1,t

dMt = rtMt dt

drt = a(b − rt) dt + σr d
(
ρW1,t +

√
1− ρ2W2,t

)
.

n = 3 state variables, St , Mt , rt , along with k = 2 sources of risk,
and m = 2 assets St , Mt . Vector/matrix functions:

µX (t,St ,Mt , rt) =

 µSt
rtMt

a(b − rt)

 ,
σX (t,St ,Mt , rt) =

σSSt 0
0 0

σrρ σr
√
1− ρ2

 , πY (t, St ,Mt , rt) =

[
St
Mt

]
.
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Positive Prices

If the asset i has a positive price, i.e., πC maps to the positive real
numbers, we can rewrite

dCt = µC (t,Xt) dt + σC (t,Xt) dWt

= Ct

[
µ̃C (t,Xt) dt + σ̃C (t,Xt) dWt

]
with µ̃C = µC

C , σ̃C = σC
C .

Applying Itô’s lemma to determine log return:

d log(C ) = C−1dC + 1
2(−C−2)d[C ]

= µ̃C dt + σ̃C dWt − 1
2 σ̃C σ̃

′
C dt

Consequently,

log(Ct) = log(C0) +

∫ t

0
(µ̃C − 1

2 σ̃C σ̃
′
C )ds +

∫ t

0
σ̃C dWs

=⇒ Ct = C0 exp
(∫ t

0
(µ̃C − 1

2 σ̃C σ̃
′
C )ds +

∫ t

0
σ̃C dWs

)
> 0
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Self-financing Portfolios

ϕt is the vector of number of units of assets held at time t.

Portfolio value generated by the portfolio strategy ϕ:

Vt = ϕ′tYt .

A portfolio strategy ϕ is self-financing if portfolio rebalancing neither
generates nor destroys money, i.e.,

dVt = ϕ′t dYt

or equivalently, VT = V0 +
∫ T
0 ϕ

′
t dYt . This is the self-financing

condition for continuous trading.
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Checking if a Market is Free of Arbitrage

We consider our generic state space market model

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

Yt = πY (t,Xt).

A natural question is whether there is an easy-to-check criterion on
whether a market satisfies “nice” economic properties.

Two fundamental economic properties are

absence of arbitrage (“no free profits without risk”)
completeness (“all risks are hedgeble”)

Since the model is formulated in terms of the functions µX (t,Xt),
σX (t,Xt), and πY (t,Xt), it should be possible to relate these
conditions to these functions.
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Arbitrage Opportunity

Definition (Arbitrage Opportunity)

1 A self-financing trading strategy ϕ is said to be an arbitrage
opportunity if the value V generated by ϕ satisfies the following
conditions:

Arb 1.) V0 = 0 Zero net investment

Arb 2.) P(VT ≥ 0) = 1 Riskless investment

Arb 3.) P(VT > 0) > 0 Chance of making profits

2 A market model is called free of arbitrage if no arbitrage opportunities
exist.

“An arbitrage opportunity makes something out of nothing.”
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Working with a Numéraire

Asset prices are expressed in terms of a chosen currency (euro, dollar,
. . . ). For theoretical purposes it is often useful to work with a
numéraire, and to consider relative asset price processes (i.e., relative
to the numéraire).

A numéraire Nt is any asset (or more generally a self-financing
portfolio) whose price is always strictly positive, i.e., it has a
representation

dNt = µN(t,Xt)dt + σN(t,Xt)dWt

= Nt [µ̃N(t,Xt)dt + σ̃N(t,Xt)dWt ]

A portfolio strategy ϕt is self-financing if and only if
d(Vt/Nt) = ϕ′t d(Yt/Nt). The relative value process is then given by

Vt

Nt
=

V0

N0
+

∫ t

0
ϕ′s d

(Ys

Ns

)
.
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First Fundamental Theorem of Asset Pricing

Given: joint process of asset prices (Yt)t≥0, and a numéraire (Nt)t≥0.

First Fundamental Theorem of Asset Pricing

The following are equivalent:

1 The market is free of arbitrage.

2 There is a probability measure QN ∼ P such that (Yt/Nt)t≥0 is a martingale
under QN .

The measure QN is called an equivalent martingale measure (EMM)
that corresponds to the numéraire N.

The direction (2) =⇒ (1) can be proven easily. However, it is a hard
task to prove (1) =⇒ (2), because one has to construct an EMM (see
Delbean and Schachermayer 2006, The Mathematics of Arbitrage) .
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Proof of the Easy Part
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Proof of the Easy Part (cont’d)
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Criterion for Arbitrage-free Markets

Proposition (No Arbitrage Criterion)

The generic state space model

dXt = µX (t,Xt) dt + σX (t,Xt) dWt , Yt = πY (t,Xt),

dYt = µY (t,Xt) dt + σY (t,Xt) dWt

is free of arbitrage if and only if for all t and x there exists a scalar
r(t, x) ∈ R and a vector λ(t, x) ∈ Rk such that

µY (t, x)− r(t, x)πY (t, x) = σY (t, x)λ(t, x).

Another way to write the equation above:[
σY πY

]︸ ︷︷ ︸
∈Rm×(k+1)

[
λ
r

]
︸︷︷︸
∈Rk+1

= µY︸︷︷︸
∈Rm

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 55 / 259



Typical Situations

A sufficient condition for absence of arbitrage is that the matrix
[σY (t, x) πY (t, x)] is invertible for all t and x . Under this condition,
the solution is moreover unique.

The size of the matrix [σY (t, x) πY (t, x)] is m× (k + 1), where m is
the number of assets and k is the number of Brownian motions in the
model. So, for the matrix to be invertible, we need

m = k + 1

(the number of assets exceeds the number of risk factors by one).

If m < k + 1, typically absence of arbitrage holds, but the solution is
not unique. If m > k + 1, then special conditions must be satisfied to
prevent arbitrage.
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Money Market Account I

Notice that on every arbitrage-free market, there exists a short-term
interest rate rt = r(t,Xt) (short rate).

The natural numéraire (the one that is used if there is no specific
reason to choose another one) is the money market account which is
locally risk-free and defined by

dMt = rtMt dt

The money market account evolves according to

Mt = M0 exp
(∫ t

0
rs ds

)
Oftentimes, M is already specified in the dynamics of Y .
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Money Market Account II

If the market is free of arbitrage, but M is not a component of Y ,
one can equip the market with a money market account by enlarging
the price vector π̃Y = [πY M]′.

The extended market is free of arbitrage and pins down the term r in
the NA criterion. The following equation is trivially satisfied:

[
σM πM

] [λ
r

]
= µM

If the solution for r is unique (but not necessarily the solution for λ),
one can indeed construct the money market account, i.e., construct a
self-financing portfolio s.t. ϕ′Y = M.

Moral: Every arbitrage-free market can be equipped with an MMA
such that the extended market is still free of arbitrage. Thus, the
MMA can be used as a numéraire in any arbitrage-free market.
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Market Price of Risk and Risk-neutral Measure

The process λt = λ(t,Xt) is called the market price of risk.

Given the market price of risk, we can apply Girsanov’s theorem and
define the Girsanov kernel

θt = E(λ)t = exp
(
−
∫ t

0
λ′sdWs −

1

2

∫ t

0
∥λs∥2ds

)
Then the process WQ with

dWQ
t = λt dt + dWt

is a k-dimensional Brownian motion under Q ∼ P.
Remark: This measure Q = QM is an equivalent martingale measure
corresponding to the money market account as numéraire (see slide
72), a so-called risk-neutral probability measure.

Remark: Under Q every traded asset has a drift rate of rt = r(t,Xt)

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 59 / 259



Proof of the NA Criterion

The condition for absence of arbitrage in the generic state space
model can be written briefly as: there must exist r = r(t, x) and
λ = λ(t, x) such that

µY − rπY = σYλ.

We will derive this from the First Fundamental Theorem of Asset
Pricing. The following concepts will be used:

numéraire
money market account
equivalent martingale measure (EMM)
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Proof of the NA Criterion

Let QN denote a probability measure defined by the RN process λN .
QN is an EMM if and only if the relative asset price process Yt/Nt is
a QN -martingale, i.e., its drift rate under QN is zero.

The relative asset price process follows

d(Y /N) = µY /N dt + σY /N dW .

According to Girsanov’s Theorem

dW̃t = λN(t,Xt) dt + dWt

is a Brownian motion under QN . Therefore,

d(Y /N) = µY /N dt + σY /N (dW̃t − λNdt).

Thus, Y /N is a QN -martingale if and only if µY /N = σY /NλN .
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Proof of the NA Criterion (cont’d)

Choose Nt = Mt (money market account) and write λM = λ.

From dMt = rtMt dt it follows that

d(M−1
t ) = −rtM

−1
t dt.

Therefore by the stochastic product rule,

d(Y /M) = Y d(M−1) +M−1 dY = M−1
(
dY − rY dt

)
so that

µY /M = M−1(µY − rπY ), σY /M = M−1σY .

Because M−1 is never zero, the condition µY /M = σY /Mλ is
equivalent to the no-arbitrage criterion

µY − rπY = σYλ.
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Example: Black-Scholes Model

Asset dynamics

dSt = µSt dt + σSt dWt , dMt = rMt dt.

The no-arbitrage criterion µY − rπY = σYλ becomes[
µS
rM

]
− r

[
S
M

]
=

[
σS
0

]
λ

where the quantities that are to be determined are indicated in blue.

There is a (unique) solution, i.e., the BS model is free of arbitrage
(and complete):

r = r , λ =
µ− r

σ

The Q-Brownian motion WQ is given by WQ
t = λt +Wt . Hence, the

dynamics under Q are

dSt = rSt dt + σSt dW
Q
t , dMt = rMt dt.
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Example: Model with Stochastic Interest Rates

The short rate follows the Vasicek model:

dMt = rtMt dt

dSt = µSt dt + σSSt dW1,t

drt = a(b − rt) dt + σr d
(
ρW1,t +

√
1− ρ2W2,t

)
.

No-arbitrage criterion[
µS
rM

]
− r

[
S
M

]
=

[
σSS 0
0 0

] [
λ1
λ2

]
There is a (non-unique) solution. The model is free of arbitrage.

The solution is non-unique because λ2 is arbitrary. The quantities r
and λ1 are defined uniquely by absence of arbitrage.
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Problem: Working with a Numéraire

(a) For a given numéraire N, derive the dynamics of Y /N.

(b) Show how the result from (a) simplifies if one chooses N = M.

Solution:
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Problem: Working with a Numéraire
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The Pricing Problem

Let an arbitrage-free model be given in the generic state space form

dXt = µX (t,Xt) dt + σX (t,Xt) dWt ,

dYt = µY (t,Xt) dt + σY (t,Xt) dWt , Yt = πY (t,Xt)

s.t.
µY (t,Xt)− r(t,Xt)πY (t,Xt) = σY (t,Xt)λ(t,Xt).

Suppose now that a new asset is introduced, for instance a contract
that will produce a state-dependent payoff at a given time T > 0.
Pricing on the basis of absence of arbitrage means: the new asset
should be priced such that no arbitrage is introduced.

We want to turn this principle into a pricing formula.
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Pricing Formula

If there is an EMM QN , for a given numéraire Nt , the relative price of
any asset must be a martingale under QN . By the martingale
property, we therefore have:

Numéraire-dependent pricing formula

Let CT denote the terminal payoff of a contingent claim that matures at
time T . For every EMM QN for a given numéraire Nt , an arbitrage-free
price at time t is given by

Ct = NtE
QN
t

[CT

NT

]
.

This can be used as a pricing formula for derivative contracts.

Crucial question: When is the arbitrage-free price of the derivative
unique?
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Unique Asset Prices

To have uniquely defined prices of derivatives, the equation

µY (t, x)− r(t, x)πY (t, x) = σY (t, x)λ(t, x)

needs to have a unique solution
(
r(t, x), λ(t, x)

)
. Then the

corresponding EMM and the corresponding SDF are uniquely
determined.

One can show that the solution is unique if and only if the matrix
[πY σY ] has full column rank for all (t, x).

Sufficient condition: the matrix [πY σY ] is invertible (requires
m = k + 1).
Necessary condition: m ≥ k + 1

In arbitrage-free markets with unique EMM QN , the arbitrage-free
price Ct = NtE

QN
t

[
CT
NT

]
is uniquely determined.

We will see later on that uniqueness of the EMM corresponds to an
important economic property: market completeness.
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Verification of Absence of Arbitrage

The process Ct is defined by

Ct = NtE
QN
t

[CT

NT

]
where CT is a given random variable.

In applications, the terminal payoff of the derivative, CT , is a function
of the state vector at time T : CT = F (XT ).

To ensure that no arbitrage is introduced by the price process Ct , we
need to verify that the process (Ct/Nt)t≥0 is a martingale; i.e., the
martingale property holds for any s and t with s < t, not just for t
and T .

This follows from the tower law of conditional expectations:

EQN
s

[Ct

Nt

]
= EQN

s

[
EQN
t

[CT

NT

]]
= EQN

s

[CT

NT

]
=

Cs

Ns
.
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Money Market Account as a Numéraire

In principle, every self-financing portfolio which generates positive
wealth can act as a numéraire.

However, there are several commonly used choices:

Money market account
Stock
Numéraire portfolio
. . .

Using the money market account as a numéraire, the pricing formula
becomes

Ct = BtE
Q
t

[CT

BT

]
= EQ

t

[
CT

Bt

BT

]
= EQ

t

[
CT e−

∫ T
t rsds

]
We refer to Q = QM as the risk-neutral pricing measure. Under Q,
the agent discounts at the risk-free rate and does not require a risk
premium.

Under Q every traded asset has an expected return of r = r(t,Xt).
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The Numéraire Portfolio

Natural question: Is there a numéraire N for which QN = P?
In an arbitrage free market driven by Brownian motion, one can show
that the answer is positive if one can solve the problem of maximizing
expected log-utility from terminal wealth, i.e., if

max
ϕ

E[log(V ϕ
T )] <∞

The portfolio ρ that maximizes this optimization problem will be
called the log-optimal portfolio or the numéraire portfolio.

One can show that using the numéraire portfolio as numéraire N, the
pricing formula becomes the real-world pricing formula

Ct = Et

[
CT

V ρ
t

V ρ
T

]
where the expectation is calculated under P.
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Alternative Formulation of the FTAP

Instead of exploiting an eqivalent martingale measure, it is also very
common to make use of a stochastic discount factor (SDF) or pricing
kernel.

A stochastic discount factor K is a positive adapted process with
K0 = 1 such that the process (Kt Yt) is a martingale under P, i.e.,

Et [KsYs ] = KtYt

One can show that the existence of an EMM is equivalent to the
existence of a SDF. Therefore, the FTAP can also be formulated in
terms of the SDF:

First Fundamental Theorem of Asset Pricing

The following are equivalent:

1 The market is free of arbitrage.

2 There is a stochastic discount factor.
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Some Properties of the SDF

The SDF is a positive adapted process, i.e., it can be written as (see
slide 46)

Kt = exp
(∫ t

0
(µ̃K − 1

2 σ̃K σ̃
′
K )ds +

∫ t

0
σ̃K dWs

)
By definition of the SDF, the process KM = (KtMt)t≥0 must be a
martingale under P. It follows from Itô’s lemma that

d(KM)t = KtMt [(r + µ̃K )dt + σ̃KdWt ]

where σ̃K = −λ′. The martingale property implies µ̃K = −r .

The SDF combines the role of discounting at the short rate and the
change of measure from P to Q.

It follows that the numéraire portfolio and the pricing kernel are
inversely related, i.e., Kt =

1
V ρ
t
.
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Multiple Payoffs

A contract may generate payoffs (possible uncertain) at multiple
points in time.

Such a contract can be viewed as a portfolio of options with
individual payoff dates. The value of the portfolio is the sum of the
values of its constituent parts.

We get, for a contract with payoffs ĈTi
at times Ti (i = 1, . . . , n):

C0 = N0

n∑
i=1

EQN

[ ĈTi

NTi

]
.

In the special case of constant interest rates, we can take the money
market account Mt = ert as the numéraire; then

C0 =
n∑

i=1

e−rTiEQ[ĈTi
].

This shows that the NDPF can be seen as a generalized net present
value formula.
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Replication

So far, we have talked about no-arbitrage and uniqueness of
arbitrage-free prices. We now turn to the natural question of whether
we can hedge risks and replicate payoffs.

Let an arbitrage-free model be given in the generic state space form

dXt = µX (t,Xt) dt + σX (t,Xt) dWt ,

dYt = µY (t,Xt) dt + σY (t,Xt) dWt , Yt = πY (t,Xt)

s.t.
µY (t,Xt)− r(t,Xt)πY (t,Xt) = σY (t,Xt)λ(t,Xt).

If we want to price a claim, a natural question is whether this
derivative can be replicated by a self-financing trading strategy ϕ.
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Replication and Complete Market

Definition (Replication Strategy, Completeness)

Let CT = F (XT ) be the terminal payoff of a contingent claim.

1 A self-financing portfolio strategy ϕ is called a replication strategy or
hedging strategy for C if

V ϕ
T = CT

2 The claim is said to be attainable if there exists a replication strategy
ϕ for this claim.

3 A market is said to be complete if and only if every claim is attainable.

A replication strategy is thus a portfolio whose value is, under all
circumstances, equal to the value of a specified contingent claim.

Market completeness is a desirable property but typically not met in
reality.
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Pricing by Replication

Lemma (Law of One Price)

Suppose the market is arbitrage-free.

1 For an attainable contingent claim C with hedging strategy ϕ,

C0 = V ϕ
0

is the unique arbitrage-free price, i.e., trading in the primary assets
and the derivative does not lead to arbitrage opportunities.

2 If V ϕ
T = V ψ

T for trading strategies ϕ and ψ, then

V ϕ
0 = V ψ

0 .

The proof is trivial and does not rely on specific asset dynamics.
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When is Replication Possible?

We need an easy-to-check criterion when replication is possible.

Second Fundamental Theorem of Asset Pricing

For an arbitrage-free market, the following are equivalent:

1 The market is complete.

2 For any given numéraire N, the corresponding EMM QN ∼ P is unique.

We have already seen that for an arbitrage-free market, the EMM is
unique if and only if the matrix [πY (t, x) σY (t, x)] ∈ Rm×(k+1) has
full column rank for all (t, x).

Consequently, if there are enough traded assets (m > k + 1 is
necessary) in the model to determine prices uniquely, then they are
also enough to make replication possible. And vice versa.
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Examples

Obviously, the Black Scholes model (see slides 42, 63) is complete
since

[πY σY ] =

[
St Stσ
Mt 0

]
is invertible for every combination of St and Mt > 0. Besides, there
was a unique solution for r and λ, which uniquely determines the
change of measure.

=⇒ Pricing by replication is always possible.

The model with stochastic interest rates of the Vasicek type (see
slides 45, 64) is incomplete (m = k = 2), and the EMM is not unique
since there is no unique solution for λ2.

=⇒ Pricing by replication is in general impossible.

However, the model can be completed by adding a bond that can be
used to hedge interest rate risk (see Chapter 6).
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The Replication Recipe

To replicate a payoff at time T given by CT = F (XT ), we follow a
four-step procedure:

Step 1. Choose a numéraire Nt and determine the function

πC (t, x) = πN(t, x)E
QN

[ F (XT )

πN(T ,XT )

∣∣∣Xt = x
]
.

Step 2. Compute σC (t, x) = ∇πC (t, x)σX (t, x).

Step 3. Solve for ϕ = ϕ(t, x) from

[σC πC ] = ϕ′[σY πY ].

Step 4. Start with initial capital πC (0,X0), and rebalance your portfolio along
the trading strategy ϕt = ϕ(t,Xt).
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Validity of the replication recipe

To show the validity of the replication recipe, three conditions need to
be demonstrated:

(i) the equation [σC πC ] = ϕ′[σY πY ] (where ϕ is the unknown) can be
solved

(ii) the portfolio value generated by the trading strategy ϕ at time T is

equal to V ϕ
T = F (XT ).

(iii) the trading strategy ϕt = ϕ(t,Xt) is self-financing

These items will be discussed on the next slides.
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Property of the function πC

We already know that the process defined by Ct = πC (t,Xt) with

πC (t, x) = πN(t, x)EQN
t

[ F (XT )

πN(T ,XT )

]
is such that Ct/Nt is a martingale under QN .

This property is translated into state space terms as follows: let
r = r(t, x) and λ = λ(t, x) be defined as the solution of the equation
(NA criterion):

µY − rπY = σYλ.

Then we also have

µC − rπC = σCλ.
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Requirement (i)

Market completeness means that the EMM for any given numéraire is
uniquely defined, i.e., the equation

µY︸︷︷︸
∈Rm

=
[
σY πY

]︸ ︷︷ ︸
∈Rm×(k+1)

[
λ
r

]
︸︷︷︸
∈Rk+1

has a unique solution [λ r ]′.

In other words, the matrix [σY πY ] = [σY (t, x) πY (t, x)] has rank
k + 1 for all t and x (its columns are linearly independent).

Because row rank = column rank, this implies that the rows of the
matrix span the (k + 1)-dimensional space. This means that the
equation

[σC πC ] = ϕ′[σY πY ].

has a unique solution ϕ. So requirement (i) is indeed satisfied.
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Requirements (ii) and (iii)

Define the portfolio strategy ϕt = ϕ(t,Xt). The corresponding
portfolio value is Vt = ϕ′tYt . Because ϕ

′πY = πC , this implies that
Vt = Ct for all t. In particular, VT = F (XT ) (requirement (ii)).

Because ϕ′πY = πC and ϕ′σY = σC , and because µY = rπY + σYλ
as well as µC = rπC + σCλ, we have

ϕ′µY = ϕ′(rπY + σYλ) = rϕ′πY + ϕ′σYλ = rπC + σCλ = µC .

Therefore,

dV = µC dt + σC dW = ϕ′(µY dt + σY dW ) = ϕ′dY

which shows that the proposed portfolio strategy is self-financing
(requirement (iii)).
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Example: Call Option in BS Model

BS model under Q (check!):

dSt = rSt dt + σSt dW
Q
t

dMt = rMt dt.

Payoff at time T : max(ST − K , 0).

Step 1: determine the pricing function:

πC (t,St) = StΦ(d1)− e−r(T−t)KΦ(d2)

with

d1,2 =
log(St/K ) + (r ± 1

2σ
2)(T − t)

σ
√
T − t
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Example: Call Option in BS Model (cont’d)

Step 2: compute

σC (t,St) =
∂πC
∂St

(t,St)σSt = Φ(d1)σSt .

Step 3: solve for ϕ(t,St) = [ϕS(t,St) ϕM(t,St)] from

[Φ(d1)σSt StΦ(d1)−e−r(T−t)KΦ(d2)] = [ϕS ϕM ]

[
σSt St
0 Mt

]
.

We find

ϕS(t, St) = Φ(d1)

ϕM(t, St) = −K Φ(d2)
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Delta Hedging

The “delta” of an option is the derivative of the option price with
respect to the value of the underlying Yi , i.e.,

∆C =
∂πC
∂Yi

There could be several underlying assets (for instance in the case of
an option written on the maximum of two stocks), and in that case
there are also several deltas.

In models driven by a single Brownian motion, if an option depends
on a single underlying asset, then the number of units of the
underlying asset that should be held in a replicating portfolio is given
by the delta of the option (as in the example). The resulting strategy
is called the delta hedge.

Under certain conditions this also works in the case of multiple
underlyings.
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The Pricing PDE

Compute µC and σC (Itô’s lemma):

µC =
∂πC
∂t

+∇πC · µX + 1
2 tr

(
HπC σXσ

′
X

)
σC = ∇πCσX .

The equation µC − rπC = σCλ becomes:

Pricing PDE

∂πC
∂t

+∇πC · (µX − σXλ)︸ ︷︷ ︸
=µ

QN
X

+1
2 tr

(
HπC σXσ

′
X

)
= rπC , πC (T , x) = F (x)

This is a partial differential equation for the pricing function πC .

Notice that the boundary condition πC (T , x) = F (x) determines the
type of the derivative.
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Remarks

In a model without any non-traded state variables, i.e., Y = X ,
πY = x , the NA condition becomes

µX − σXλ = r x

The PDE collapses to

∂πC
∂t

+ r∇πC · x + 1
2 tr

(
HπC σXσ

′
X

)
= rπC

The drift term of the spatial first-order derivatives is r , which is the
drift term of traded assets under Q.

The PDE may be solved analytically or numerically (finite-difference
methods – generalization of tree methods).

The PDE can also be derived using the Feynman-Kac Theorem: a
mathematical statement that connects the theory of partial
differential equations to conditional expectations.
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Excursion: The Feynman-Kac Theorem

Theorem (Feynman-Kac)

Consider the following parabolic partial differential equation

∂πC
∂t

+∇πC · µQX (t, x) +
1
2 tr

(
HπC σX (t, x)σX (t, x)

′
)
+ f (t, x) = r(t, x)πC

subject to the terminal condition πC (T , x) = F (x). Then, the solution can
be written as a conditional expectation

πC (t, x) = EQ
t,x

[∫ T

t
e−

∫ s
t r(τ,Xτ ) dτ f (s,Xs)ds + e−

∫ T
t r(τ,Xτ ) dτF (XT )

]
under Q such that X is an Itô process driven by the equation

dX = µQX (t,X ) dt + σX (t,X ) dWQ,

with WQ is a Brownian motion under Q.
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Example: Black-Scholes PDE

Under Q, the dynamics are

dSt = rSt dt + σSt dW
Q
t

dMt = rMt dt.

Therefore, the BSPDE for a derivative with terminal payoff F (ST )
reads

∂πC
∂t

+
∂πC
∂S

Sr +
1

2

∂2πC
∂S2

S2σ2 = r πC

s.t. πC (T , ST ) = F (ST )

In their original paper Black and Scholes (1973), derived this formula
using a different approach and made two mistakes which cancel each
other out. Merton (1973) corrected these mistakes and came up with
the same PDE.

The PDE can be transformed to the so-called heat equation, which is
commonly used in physics and has a well-known solution.
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Example: Pricing PDE with Stoch. Interest Rates

Under Q, the dynamics are

dMt = rtMt dt

dSt = rtSt dt + σSSt dW
Q
1,t

drt = aQ(bQ − rt) dt + σr d
(
ρWQ

1,t +
√

1− ρ2WQ
2,t

)
.

Notice that the risk-neutral measure is not uniquely determined since
the market price of risk λ = (λ1 λ2) is not unique.

Therefore, the pricing PDE for a derivative with payoff F (rT ,ST )
reads

r πC =
∂πC
∂t

+
∂πC
∂S

Sr +
∂πC
∂r

aQ(bQ − r)

+
1

2

∂2πC
∂S2

S2σ2S +
1

2

∂2πC
∂r2

σ2r +
∂2πC
∂r∂S

ρσrσSS

s.t. πC (T , rT ,ST ) = F (rT , ST )
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Summary

Generic State Space Model:

dXt = µX (t,Xt) dt + σX (t,Xt) dWt , Yt = πY (t,Xt)

No-arbitrage condition (from FTAP 1):

µY − rπY = σYλ

Numéraire-dependent pricing formula:

Ct

Nt
= EQN

t

[CT

NT

]
Replication recipe (from FTAP 2) if rk(σY πY ) = k + 1:

[σC πC ] = ϕ′[σY πY ]

Pricing via PDE:

∂πC
∂t

+∇πC · (µX − σXλ) +
1
2 tr

(
HπC σXσ

′
X

)
= rπC
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Part III

Contingent Claim Pricing
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European / American Options

This chapter studies examples for contingent claim pricing in several
tangible specifications of the GSSM.

Option

1 A European option is a contract between two counterparties, whereby the
buyer (= holder) has the right to buy (= Call option) or to sell (= Put
option) the underlying from/to the seller (= stillholder) for a predetermined
strike price K at its maturity T .

2 An American option has the feature that the option can be exercised before
maturity, i.e., in [0,T ].

Option profile at maturity T on a stock with price process S :

CT = (ST − K )+ = max{ST − K , 0}
PT = (K − ST )

+ = max{K − ST , 0}
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Option Profiles
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How to come up with the Black-Scholes Formula?

The Black-Scholes formula is probably the most famous formula in
quantitative finance and the starting point of modern financial
mathematics.

Black and Scholes (1973) derive the formula by transforming the
BSPDE to the heat equation, which has a well-known solution

r πC =
∂πC
∂t

+
∂πC
∂S

Sr +
1

2

∂2πC
∂S2

S2σ2S

s.t. πC (T , ST ) = max(ST − K , 0).

Besides solving the BSPDE, the problem can be tackled by several
approaches, e.g.,

Pricing under the EMM Q
Pricing under P using the SDF / numéraire portfolio
Taking the limit of a sequence of binomial models
Splitting the payoff into two parts and tackle them under two different
measures
...
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Examples: Pricing Approaches
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The Fastest Way to the Black-Scholes Formula

The European call option has payoff function

CT = max(ST − K , 0) = 1{ST≥K}(ST − K ).

The price of the European put option with payoff
PT = max(K − ST , 0) can be obtained from the put-call parity

Pt = Ct − St + Ke−r(T−t).

We can decompose the call option into two options;

1 a long position in the stock-or-nothing option which has payoff
1{ST≥K}ST

2 a short position in the cash-or-nothing option which has payoff
1{ST≥K}K .

The price of the call option is determined if we know the prices of the
stock-or-nothing option and the cash-or-nothing option.
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Cash-or-nothing Option under Q

Cash-or-nothing option, Cm
T = 1{ST≥K}K will be priced under Q:

Cm
0

M0
= EQ

[Cm
T

MT

]
=

K

MT
EQ[1{ST≥K}

]
=

K

MT
QM(ST ≥ K ).

Under Q, the evolution of the stock price is given by

dSt = rSt dt + σSt dW
Q
t ,

where WQ is a Brownian motion under Q.

Therefore:

ST = S0 exp
(
(r − 1

2σ
2)T + σ

√
TZ

)
, Z

Q∼ N(0, 1)

=⇒ Q(ST ≥ K ) = Φ(d2), d2 =
log(S0/K ) + (r − 1

2σ
2)T

σ
√
T

.
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Stock-or-nothing option under QS

Stock-or-nothing option, C s
T = 1{ST≥K}ST :

C s
0

S0
= EQS

[C s
T

ST

]
= EQS

[
1{ST≥K}

]
= QS(ST ≥ K ).

Under QS , the evolution of the stock price is given by

dSt = (r + σ2)St dt + σSt dW
QS
t

where WQS is a Brownian motion under QS .

Therefore:

ST = S0 exp
(
(r + 1

2σ
2)T + σ

√
TZ

)
, Z

QS∼ N(0, 1)

=⇒ QS(ST ≥ K ) = Φ(d1), d1 =
log(S0/K ) + (r + 1

2σ
2)T

σ
√
T

.
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The Black-Scholes Formula

Putting everything together:

C0 = C s
0 − Cm

0 = S0Φ(d1)− e−rTKΦ(d2).

The price of the call option is equal to the current value of the stock
times the probability under QS that the option will end in the money,
minus the current value of the strike times the probability under Q
that the option will end in the money.
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Problem: Derive the QS -Stock Dynamics

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 108 / 259



Problem: Derive the QS -Stock Dynamics
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Option Price versus Intrinsic Value
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Critique: Black-Scholes Model

Volatility, interest rate, expected return are assumed to be constant.
−→ Volatility Smile

Returns are assumed to be normally distributed. −→ Underestimation
of extreme events.

Model builds upon a complete market without frictions (no taxes,
transaction costs, short-selling constraints, . . . ).

Implied volatility ̸= historical volatility

These caveats become visible if one investigates what volatilities are
necessary to explain option prices by the Black-Scholes formula.
Implied volatility is not constant, but depends on K and T .
If the option is at-the-money, implied volatility is lowest (volatility
smile).

Some of these points can be tackled by adding non-traded state
variables to the model.
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A Double-barrier Option

A perpetual up-and-out down-and-in digital double barrier option is a
contract that is specified by

an underlying St (for instance a stock index)
a lower barrier L
an upper barrier U
a fixed payoff amount K .

The contract pays the amount K when the stock price St reaches the
lower barrier L, but only if the stock price has not reached the upper
barrier first. (i.e., the contract “knocks out” when the stock price St
reaches U.)

As long as neither the lower nor the upper barrier has been reached,
the contract stays alive.

Therefore the time of expiry of the contract is random (determined in
terms of the process St).

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 112 / 259



PDE Approach

Assume that the BS model holds for the stock price St . The
Black-Scholes equation for the pricing function πC (t,St) is in general

∂πC
∂t

(t, S) + rS
∂πC
∂S

(t,S) +
1

2
σ2S2 ∂

2πC
∂S2

(t,S) = rπC (t, S).

Since πC does not depend on t, this reduces to the ODE

rS
dπC
dS

(S) +
1

2
σ2S2 d2πC

dS2
(S) = rπC (S).

Boundary conditions for the up-and-out down-and-in option:

πC (U) = 0, πC (L) = K .
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Solving the ODE

We have a linear homogeneous second-order ODE, so the general
solution is a linear combination of two particular solutions.

These solutions should be self-financing portfolios whose values
depend only on St . One solution is St itself (obviously!), another is
S−γ
t with γ = 2r/σ2.

The solution is therefore given by

πC (St) = c1St + c2S
−γ
t

where the constants c1 and c2 should be chosen such that

πC (U) = c1U + c2U
−γ = 0, πC (L) = c1L+ c2L

−γ = K .

This linear system has a unique solution.
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Option Price

Putting everything together yields

πC (t,St) =
LγK

Uγ+1 − Lγ+1

(
Uγ+1S−γ

t − St
)
.
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An Example: The Heston Model

Modeling Stochastic Volatility by a CIR process

dMt = Mtrdt

dSt = St [µdt +
√
νtdW1,t ]

dνt = κ(θ − νt)dt + σ
√
νtd(ρW1,t +

√
1− ρ2W2,t)

The model has five input parameters:
ν0, the initial variance.
θ , the mean-reversion variance of the stock price
κ, the mean-reversion speed of the variance of the stock price
ρ the correlation of the two Wiener processes.
σ the volatility of the volatility, or ’vol of vol’

n = 3 state variables, k = 2 sources of risk, and m = 2 assets:

µX =

 µSt
rMt

κ(θ − νt)

 , σX =

√
νtSt 0
0 0

σρ
√
νt σ

√
νt
√

1− ρ2

 , πY =

[
St
Mt

]
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Economic Properties

The model is free of arbitrage: The NA criterion µY − πY r = σYλ
yields [

µS
rM

]
− r

[
S
M

]
=

[√
νtS 0
0 0

] [
λ1
λ2

]
The market price of stock risk is uniquely determined, λ1 =

µ−r√
νt
.

The market price of volatility risk λ2 can be chosen arbitrarily.

The model is obviously incomplete. Thus for any given numéraire, the
corresponding EMM is not unique.

Consequently, neither the numéraire-dependent option pricing
formula, nor the PDE approach deliver unique arbitrage-free option
prices. They rather depend on the particular choice of λ2.
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Change of Measure

Under Q, generated by (λ1 λ2), the model evolves according to

dSt = St [rdt +
√
νtdW

Q
1,t ]

dνt =
[
κ(θ − νt)− λ1,tσρ

√
νt︸ ︷︷ ︸

=(µ−r)σρ

−λ2,tσ
√
νt
√
1− ρ2

]︸ ︷︷ ︸ dt
+ σ

√
νtd(ρW

Q
1,t +

√
1− ρ2WQ

2,t)

Heston (1993) chooses λ2,t such that the drift adjustment is
proportional to νt , i.e., λνt for λ ∈ R
Therefore,

dνt =
[
κ(θ − νt)− λνt

]
dt + σ

√
νtd(ρW

Q
1,t +

√
1− ρ2WQ

2,t)

and there is a closed-form solution for the call option price for every
particular choice of λ ∈ R.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 119 / 259



Problem: Set up the Pricing PDE
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Calibration vs. Estimation

Crucial Question: How do we determine the market price of risk?

Calibration and estimation are two ways of determining parameters in
a financial model. The difference is:

estimation uses methods of statistics/econometrics to infer parameter
values from observed historical behavior of asset prices and other
relevant quantities
calibration sets parameter values so as to generate a close match
between derivative prices obtained from the model and prices observed
currently in the market.

Estimation comes with standard errors, significance tests, and so on;
analogous quantities that may serve as warning signals are not
produced by calibration.

Estimation works with models that are written under P (real-world
measure); calibration can be applied to models that are written under
QN (martingale measure corresponding to a chosen numéraire).
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In our Situation

Estimation helps us to figure out the parameters under P

dMt = Mtrdt

dSt = St [µdt +
√
νtdW1,t ]

dνt = κ(θ − νt)dt + σ
√
νtd(ρW1,t +

√
1− ρ2W2,t)

However, for pricing purposes, we need the Q-dynamics.

Idea: Calibrate the relevant parameters under Q (in particular λ)
such that the model closely matches the prices of plain vanilla options.

Use the calibrated parameters to determine arbitrage-free prices of
more complicated products.
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Recipe for Calibration

Determine a closed-form solution for option prices that depends on
the particular choice of the market price of risk, i.e., an expression

C (S0, ν0,Θ,K ,T )

for a strike price K , time horizon T , and parameter set
Θ = (κ, θ, σ, ρ, λ).

Observe market prices of options C1(K1,T1), . . .CN(KN ,TN) for
various combinations of K and T .

Solve the following minimization problem for a set of weights w :

Θ∗ = argmin
Θ

N∑
i=1

wi

[
C (S0,Θ,Ki ,Ti )− Ci (Ki ,Ti )

]2
This shows a potential conflict between estimation and calibration:
time series information can be used to determine the parameters κ
and σ in the model under Q, and these values might differ from those
obtained by calibration.
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Costs and Dividends

In the theory we assume that assets are self-financing, but, in reality,
stocks often generate dividends, and commodities typically bring
storage costs.

Strategy: specify where the dividends go (or where the costs are
financed from). In this way, the given asset becomes part of a
self-financing portfolio. Then derive the distribution of the asset
under a suitable EMM.

To illustrate, suppose that St is the price at time t of a
dividend-paying stock, and assume for convenience that dividend is
paid continuously at a fixed rate, as a percentage of the stock price.
We show two implementations of the strategy above.
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Motivation from Discrete Time

Usual BS model:

dSt = µSt dt + σSt dWt

dMt = rMt dt

but now suppose that the stock pays continuously a fixed-percentage
dividend, i.e., the dividend received from one unit of the stock during
the instantaneous interval from t to t + dt is qStdt where q is a
constant.

We can choose to re-invest the dividends into the stock. Let Vt be
the value at time t of the portfolio that is created in this way. We
have for small ∆t:

Vt+∆t = Vt +
Vt

St

(
St+∆t − St

)
+

Vt

St
qSt∆t.
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Dividends in Continuous Time

In continuous time:

dVt =
Vt

St

(
dSt + qSt dt

)
= (µ+ q)Vt dt + σVt dWt .

The portfolio Vt is self-financing, so under Q:

dVt = rVt dt + σVt dW
Q
t .

From dVt = (Vt/St)(dSt + qSt dt) it follows that
dSt = (St/Vt)(dVt − qVt dt).

Therefore
dSt = (r − q)St dt + σSt dW

Q
t .

This allows us to price options that are stated in terms of St .
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Alternative Approach

Alternative approach: assume that the dividends are placed in an
savings account A.

We have for small time interval of length ∆t:

At+∆t = At + rAt∆t + qSt∆t

so that dAt = (rAt + qSt) dt.

The portfolio Vt := St + At is self-financing. So, under Q,

dVt = rVt dt + σSt dW
Q
t .

From dVt = dSt + dAt it follows that dSt = dVt − dAt .
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Alternative Approach (cont’d)

Therefore,

dSt = rVt dt + σSt dW
Q
t − (rAt + qSt) dt

= r(St + At) dt + σSt dW
Q
t − (rAt + qSt) dt

= (r − q)St dt + σSt dW
Q
t .

We find the same SDE for St under Q as was found on the basis of
the reinvestment strategy.

The pricing formula for a call option written on St becomes

C0 = e−qTS0(d1)− e−rTK (d2)

d1 =
log(S0/K ) + (r − q + 1

2σ
2)T

σ
√
T

, d2 = d1 − σ
√
T .
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General Setting

Consider an extension of the generic state space model

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

Yt = πY (t,Xt).

by introducing an m-dimensional dividend process Dt = D(t,Xt)
representing the cumulative dividends of the m assets.

dDt represents the dividends at time t.

The gains process is defined as

Gt = Yt + Dt

A process ϕ is called a self-financing trading strategy if

Vt = ϕ′tYt , dVt = ϕ′tdGt

= ϕ′tdYt + ϕ′tdDt
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Discounted Gain Process

Given a pricing kernel K , we define the deflated price process by
Y K = KY .
What is an appropriate definition for the deflated gains process?
=⇒ With dividends, it does not make sense to define the deflated
gains process by GK = KY + KD, since it does not take the timing
and reinvestment of the dividends into account.

Instead, we define the deflated gains process GK s.t. deflated wealth
VK = KV ϕ generated by self-financing trading strategy ϕ equals
wealth generated by this trading strategy and deflated prices and
gains:

VK = ϕ′(KY ), dVK = ϕ′dGK , GK is a P-martingale

We already know Y K = KY . What’s about DK?
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Dividend Dynamics

Easiest Formulation (dividends are locally risk-free):

dDt = µD(t,Xt)dt

Then, the discounted dividends follow (check!):

dDK
t = KtµD(t,Xt)dt

General Case (dividends my be driven by systematic or idiosyncratic
shocks):

dDt = µD(t,Xt)dt + σD(t,Xt)dWt

Then, the discounted dividends follow (check!):

dDK
t =

[
KtµD(t,Xt) + σ′KσD

]
dt + Ktσ

′
DdWt
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First FTAP with Dividends

Given: joint process of asset prices (Yt)t≥0, cumulative dividends
(Dt)t≥0

The deflated gains process GK is given by

dGK = d(KY ) + dDK
t .

First Fundamental Theorem of Asset Pricing

The following are equivalent:

1 The market is free of arbitrage.

2 There is a positive adapted scalar process (Kt)t≥0 such that the
process (GK

t )t≥0 is a martingale under P.
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Pricing with Dividends

By definition K0 = 1, and D0 = 0.

FTAP with dividends implies:

GK
t = Et [G

K
T ] ⇐⇒ Yt = Y K

t + DK
t = Et [YTKT + DK

T ],

in particular, Y0 = E[YTKT + DK
T ]

Remark: The FTAP works for other numéraire-measure-combinations
as well. In particular, for Nt = Mt :

Yt = EQ
t

[ YT

MT
+

∫ T

t

1

Mu
dDu

]
If dividends follow the dynamics dDt = µD(t,Xt) dt, then

Yt = EQ
t

[
YT e−

∫ T
t rsds +

∫ T

t
e−

∫ u
t rsdsµD(u,Xu)du

]
,

i.e., prices have a Feynman-Kac representation.
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Part VI

Fixed Income Modeling
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Coupon Bonds

Now, we are turning to interest rate products beyond a simple money
market account.
Bond = tradeable debt issued by borrower represented by a contract
to repay the notional plus interest over the lifetime of the bond.
Modeling bonds is more involved than modeling stocks because

1 they pay regular coupons Ci at predefined payment dates Ti ⇒ clean
vs. dirty prices

2 they have a finite time horizon T with a known redemption value N
3 their volatility dies out as t → T
4 they are exposed to default risk (see Chapter 7) and liquidity risk

Structure of a coupon bond:
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Example: United States of America 1.375% 16/23

The graph depicts the evolution of the clean price.

The true market price is the dirty price = clean price + accrued
interest.

Accrued interests are paid to compensate the seller for the period
during which the bond has been held but for which she will receive no
coupon payment.
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Example: United States of America 1.375% 16/23

Bond Volatility is dying out as t → T .

Clean Price → N as t → T .

Dirty Price → N + C as t → T .
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Bond Yields

The yield-to-maturity y ct (T ) of a coupon bond paying coupons at a
rate c (C = c∆Ti

N) and maturing at T = Tn is implicitly defined by

Pc
t =

n∑
i=1

Ce−y c
t (T )(Ti−t) + N e−y c

t (T )(T−t)

In practice, bonds are often quoted in terms of yields instead of prices.
The concept makes the implicit assumption that one can reinvest the
coupon payments at the same rate of return.
Yields of zero-coupon bonds are also called spot rates, i.e.,
Rt(T ) = y0t (T ).
Solving for the yield-to-maturity typically requires a computer since
closed-form solutions are only available in rare special cases.
There is an approximation for the discretely-compounded
yield-to-maturity which admits a nice interpretation:

ysimple ≈ C

P0
+

1

T − t

N − Pt

Pt
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First-order Approximation
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Evolution of Bond Yields 1y

source:	tradingeconomics.com
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Evolution of Bond Yields 10y

source:	tradingeconomics.com
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Evolution of Bond Yields 50y

source:	tradingeconomics.com
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Zero-Coupon Bonds

A zero-coupon bond is a bond that does not pay any coupons.

A coupon bond is just a portfolio of zero-coupon bonds.

For our modeling purposes, we consider zero-coupon bonds with
notional N = 1 only, and assume that these bonds can be traded for
every time horizon T . These bonds will be called T -bonds.

The time-t price of a T -bond is denoted by Pt(T ). Convention:
P(T ) = P0(T ).

This is the discount factor at time t for safe payments made at time
T . It represents the “time value of money”.

Arbitrage-free (dirty) price of a coupon bond that pays coupons C at
predefined payment dates Ti , i = 1, . . . , n, has a notional N, and
matures at time T = Tn:

Pc
t =

n∑
i=1

C Pt(Ti ) + N Pt(T )
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Bond Price versus Discount Curve
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Problem: Term Structure of Interest Rates

1 The graph below depicts the yield curve T 7→ yt(T ) of German
Bundesanleihen in 2019. Plot the yield curve of German
Bundesanleihen as of 11th of October (data on Canvas).

2 Explain how and why the term structure has been evolving over the
last couple of years and why this might be a problem when we model
the term structure of interest rates.
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Problem: Solution (1)
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Problem: Solution (2)
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Outline for Bond Modeling

We have to deal with five problems:

1 Term Structure of Interest Rates
→ Model how interest rates vary over time.

2 Coupon Payments
→ Model the prices of zero-coupon bonds. A coupon bond is just a
portfolio of zero-bonds.

3 Finite Time Horizon
→ We already know how to price derivatives with a finite time
horizon.

4 Vanishing Volatility
→ This problem will be solved automatically.

5 Credit Risk
→ Add a jump process to the dynamics that models credit default
(see Chapter 7).

In order to understand how these steps can be carried out we need to
establish the relations between interest rates and bond prices.
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Spot Rates vs. Forward Rates

To make discount factors for different maturities more easily accessible,
usually a translation is made to interest rates (or yields to maturity).
There are two fundamental types of interest rates for each bond issuer.

1 Spot rate Rt(T ) holds at time t for an investment over [t,T ].
Convention: R(T ) = R0(T ).

2 Forward rate Ft(T1,T2) holds at time t for an investment over
[T1,T2]. Convention: F (T1,T2) = F0(T1,T2).
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Spot Rates

The spot rate can be backed out from zero bonds from the equation

Pt(T ) = e−Rt(T )(T−t) ⇐⇒ Rt(T ) = − 1

T − t
ln
(
Pt(T )

)
Price of a coupon bond that pays coupons C at predefined payment
dates Ti , i = 1, . . . , n, has a notional N, and matures at time
T = Tn:

Pc
t =

n∑
i=1

Ce−Rt(Ti )(Ti−t) + N e−Rt(T )(T−t)

The curve that is obtained by plotting Pt(T ) against T is called the
discount curve, i.e., T 7→ Pt(T )

The curve that is obtained by plotting Rt(T ) against T is called the
spot curve, i.e., T 7→ Rt(T )
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Forward Rates and Forward Agreements

A forward agreement is a contract that allows an investor to log in
today an interest rate for an investment over a future time interval.
Forward rate Ft(T1,T2) holds at time t for an investment over
[T1,T2]. Convention: F (T1,T2) = F0(T1,T2).

No arbitrage implies

eRt(T1)(T1−t)︸ ︷︷ ︸
=1/Pt(T1)

eFt(T1,T2)(T2−T1) = eRt(T2)(T2−t)︸ ︷︷ ︸
=1/Pt(T2)

Consequently,

Ft(T1,T2) =
1

T2 − T1
ln
(Pt(T1)

Pt(T2)

)
=

1

T2 − T1

[
Rt(T2)(T2 − t)− Rt(T1)(T1 − t)

]
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Instantaneous Forward Rate

We define the instantaneous forward rate as

Ft(T ) = lim
∆t→0

Ft(T ,T +∆t)

An application of L’Hospitals rule yields

Ft(T ) = − ∂

∂T
lnPt(T ) = −P ′

t(T )

Pt(T )

Since lnPt(T ) = −Rt(T )(T − t), we obtain

Ft(T ) = Rt(T ) + (T − t)
∂

∂T
Rt(T )

The curve that is obtained by plotting Ft(T ) against T is called the
forward curve, i.e., T 7→ Ft(T )
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Important Relations

The discount factors can be expressed in terms of the forward rates

Pt(T ) = e−
∫ T
t Ft(s)ds

In particular, to ensure that discount factors are monotonically
decreasing it is necessary and sufficient that the forward rates are
positive.

We can express the spot rate in terms of the forward rate by

Rt(T ) =
1

T − t

∫ T

t
Ft(s)ds

This shows that the spot rates can be viewed as a cumulative average
of the forward rates.
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Relation to the Money Market Account

By definition

rt = lim
∆t→0

Rt(t +∆t) = − lim
∆t→0

∂

∂T
lnPt(t +∆t) = Ft(t)

A zero-bond with maturity at T can be considered as a “derivative”
with constant payoff 1 at T , i.e.,

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
We thus need appropriate models for the short rate. From these, we
can derive

(Zero)-coupon bond prices
Term structure of interest rates, i.e., the mapping T → Rt(T )
Prices of interest rate derivatives
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LIBOR Rates

London Interbank Offered Rate (LIBOR) is an interest-rate average
calculated from estimates submitted by the leading banks in London.

The real-world LIBOR rates are simple interest rates without
compounding during their lifetime with maturity in 1 day, 1 month, 3
months, 6 months, and 12 months.

In this lecture, we refer to LIBOR as a set of discretely compounded
risk-free rates.

Tenor: ∆Ti
= Ti+1 − Ti

current LIBOR-spot rate for [t,Ti ]: Lt(t,Ti )

current LIBOR-forward rate for [Ti ,Tj ]: Lt(Ti ,Tj)

future LIBOR-spot rate for [Ti ,Tj ]: LTi
(Ti ,Tj), Ti > t
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LIBOR Rates

Under no arbitrage, the LIBOR-forward rates satisfy

1 + Lt(Ti ,Tj)(Tj − Ti ) = eFt(Ti ,Tj )(Tj−Ti ) =
Pt(Ti )

Pt(Tj)

=⇒ Lt(Ti ,Tj) =
1

Tj − Ti

[Pt(Ti )

Pt(Tj)
− 1

]
.

Using ∆Ti
= Ti+1 − Ti , the one-period LIBOR-forward rates satisfy

Lt(Ti ) = Lt(Ti ,Ti+1) =
1

∆Ti

[ Pt(Ti )

Pt(Ti+1)
− 1

]
LIBOR-spot rates:

LTi
(Ti ,Tj) =

1

Tj − Ti

[ 1

PTi
(Tj)

− 1
]

and the corresponding one-period rate

LTi
= LTi

(Ti ,Ti+1) =
1

∆Ti

[ 1

PTi
(Ti+1)

− 1
]

.
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Floating Rate Notes

A Floating Rate Note is a bond with variable coupon payments that
are typically linked to a reference rate.

It is very common in quantitative finance to use LIBOR rates as
reference interest rates.

Variable coupon payments made at times Ti , i = 1, . . . , n with
∆Ti

= Ti+1 − Ti , are spot LIBOR payments LTi−1
= LTi−1

(Ti−1,Ti )
fixed at the previous payment date Ti−1.

Payment structure of a FRN:

t T1 T2 . . . Tn−1 T = Tn

Ct LT0∆T0N LT1∆T1N . . . LTn−2∆Tn−2N (1 + LTn−1∆Tn−1)N
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Price of a Floating Rate Note

Determine the price of the FRN at time Tn−1:

Pfloat
Tn−1

= PTn−1(Tn)N(1 + LTn−1∆Tn−1) =
N(1 + LTn−1∆Tn−1)

1 + LTn−1∆Tn−1

=⇒ Pfloat
Tn−1

= N.

Determine Pfloat
Tn−2

by discounting value components at Tn−1

value of remaining cash flows: N
coupon: LTn−2N

discounting yields

Pfloat
Tn−2

=
N(1 + LTn−2∆Tn−2)

1 + LTn−2∆Tn−2

=⇒ Pfloat
Tn−2

= N.

Therefore (mathematical induction): Pfloat
Tj

= N. One can also show

Pfloat
t = N for all t ≤ T .
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Interest Rate Swap

An interest rate swap is a derivative contract which exchanges one
stream of future interest payments for another stream based on a
specified principal amount. Interest rate swaps usually involve the
exchange of a fixed interest rate s(T ) for a floating rate Lt .

How should the par swap rate s(T ) be chosen such that the price of
the contract is zero at initiation?

An interest rate swap is equivalent to the exchange of the coupon
payments (but not the notionals) of a coupon bond against those of a
floating rate note.
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Par Swap Rate

The swap rate must be chosen such that both products have the
same price

Ps
0(T )︸ ︷︷ ︸

Price of a Coupon bond

!
= N︸︷︷︸

Price of a FRN

Choose s(T ) such that the market is free of arbitrage, i.e.,

N =
n∑

i=1

s0(T )∆Ti−1
NP0(Ti ) + NP0(T )

=⇒ 1 =
n∑

i=1

s0(T )∆Ti−1
P0(Ti ) + P0(T )

=⇒ s0(T ) =
1− P0(T )∑n

i=1∆Ti−1
P0(Ti )

The mapping T 7→ st(T ) is the swap curve at time t.
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Value of a Swap

While the par swap rate s0(T ) is chosen such that the value of the
swap at initiation is zero, the swap value will be changing over time.

We denote the time-t value of a payer swap (i.e., holder is the
counterparty that pays the fixed interest) by V payer

t . By construction
V payer
0 = 0.

If t > 0, the value of this swap equals the difference between the
floating leg and the fixed leg, i.e.,

V payer
t = V float

t − V fixed
t

= N[1− Pt(T )] − s0(T )
n∑

i=1

∆Ti−1
NPt(Ti )

= st(T )
n∑

i=1

∆Ti−1
NPt(Ti ) − s0(T )

n∑
i=1

∆Ti−1
NPt(Ti )
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Value of a Swap

Consequently, the value of a payer swap is

V payer
t = [st(T )− s0(T )]

n∑
i=1

∆Ti−1
NPt(Ti )

The value of a receiver swap (holder pays variable interest) at time t
is just V receiver

t = −V payer
t .

Moral: Swaps can be priced without an interest rate model. All we
need is the empirically observable discount curve, i.e., prices of
zero-coupon bonds.

A payer swaption is a contract that entitles the holder to enter, at a
given time in the future, a payer swap with a specified duration and a
swap rate that is determined in advance (the strike).

To price swaptions, we need a model that describes the evolution of
the swap curve over time. −→ Swap Market Model.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 165 / 259



Bond Options

A European bond option is a contract between two counterparties,
whereby the buyer (holder) has the right to buy (Call option) or to
sell (Put option) the underlying bond from/to the seller (stillholder)
at a predetermined strike price K at its maturity T1.

Option with maturity in T1 on a zero bond with maturity in T2 > T1:

CallT1(PT1(T2)) = (PT1(T2)− K )+

PutT1(PT1(T2)) = (K − PT1(T2))
+

Put-call-parity for European bond options

Putt = Callt − Pt(T2) + K · Pt(T1).

To price bond options, we need a model that describes the evolution
of the bond prices over time. −→ Short Rate models, HJM
framework.
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Interest Rate Options

Interest rate options are options where the underlying is an interest
rate.

If the underlying interest rate exceeds (caplet) or falls below (floorlet)
a certain boundary at maturity, the holder of the option can claim an
interest payment.

Caplet with maturity Ti and strike rate LC on a notional N has payoff
at time Ti :

(LTi−1
− LC︸︷︷︸
strike

)+∆Ti−1
N

Cap: Portfolio of caplets
⇒ hedge against increasing interest rates

Floor: Portfolio of floorlets with payoffs (LF − LTi−1
)+∆Ti−1

N
⇒ hedge against decreasing interest rates.

To price swaptions, we need a model that describes the evolution of
the LIBOR rates over time. −→ LIBOR Market Model.
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Relation between Interest Rate Options and Swaps

While an interest rate swap provides a perfect hedge against
fluctuating interest rates, a caplet only insures against rising interest
rates and a floorlet against shrinking interest rates.

Consider a long-short portfolio of caplets and floorlets with identical
strike rates L = LC = LF :[

(LTi−1
− L)+ − (L− LTi−1

)+
]
∆Ti−1

N

=
[
max(LTi−1

, L)− L−max(LTi−1
, L) + LTi−1

]
∆Ti−1

N

=
[
LTi−1

− L
]
∆Ti−1

N

=LTi−1
∆Ti−1

N − L∆Ti−1
N

This is identical to an exchange of a variable interest rate and a fixed
interest rate, i.e., a one-period interest rate swap.

Interest rate swaps can thus be decomposed into a long-short
portfolio of caps and floors. ”Cap – Floor = Payer Swap”
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Relation between Bond Options Interest Rate Options

Caplet with maturity Ti and strike rate LC on a notional N has payoff
at time Ti :

(LTi−1
− LC )

+∆Ti−1
N

=
( 1

∆Ti−1

[ 1

PTi−1
(Ti )

− 1
]
− LC

)+
∆Ti−1

N

=
( 1

PTi−1
(Ti )

− 1−∆Ti−1
LC

)+
N

The caplet value at the fixing date Ti−1 is(
1− PTi−1

− PTi−1
∆Ti−1

LC

)+
N =

(
N − PTi−1

(1 + ∆Ti−1
LC )N

)+

A caplet can be viewed as a put option on a zero-coupon bond that
matures at time Ti with face value (1 + ∆Ti−1

LC )N. The expiry date
of the option is Ti−1, and the strike is N.
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Modeling the Term Structure of Interest Rates

We first consider default-free (and perfectly liquid) bonds
corresponding to the discount factors and interest rates.

We start with the benchmark no arbitrage Vasicek model.

We then generalize this benchmark model, focusing on so-called affine
term structure models.

We will also study the Heath-Jarrow-Morton framework and the
LIBOR market model.

The pricing of bonds can be influenced significantly by credit risk
(and liquidity risk) −→ Chapter 7.
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Wishlist for Term Structure Models

A good term-structure model should be able to

reproduce the currently observed term structure (i.e., bond prices).

reproduce currently observed prices of other term structure products.

generate (under P) reasonable future term structures (for instance
does not generate (very) negative interest rates).

capture volatilities of rates for different maturities and correlations
between them.

be tractable; allows quick pricing of popular term structure derivatives
such as swaptions and interest rate caps.
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Short Rate Models

A generic short-rate model for the evolution of the term structure can
be written as follows:

dXt = µX (t,Xt)dt + σX (t,Xt)dW , rt = h(t,Xt)

Money Market Account: dMt = Mtrtdt

A T -bond is just a derivative with constant payoff PT (T ) = 1 at
maturity T . Pricing under Q:

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
The TSIR is thus given by

Rt(T ) = − 1

T − t
logEQ

t

[
e−

∫ T
t rsds

]
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Vasicek model under P and under Q

Vasicek (1977) originally chosed an Ornstein-Uhlenbeck process for
the short rate under P:

drt = a(b − rt) dt + σ dWt , dMt = Mtrtdt

This model (X = r , Y = M) satisfies the NA criterion and λ can be
chosen arbitrarily.

Assuming that the market price of risk associated to Wt is a constant
λ yielding dWQ

t = λ dt + dWt (where WQ
t is a BM under Q), and

drt = [a(b − rt)− σλ] dt + σ dWQ
t

which can be written in the form

drt = a(bQ − rt) dt + σ dWQ
t , bQ = b − λ

σ

a
.

This is the model under Q as we used it before.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 174 / 259



”Typical” Paths of the Vasicek Model
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Problem: Solving Ornstein-Uhlenbeck

Show the following properties of the Ornstein-Uhlenbeck process
dXt = a(b − Xt) dt + σ dWt :

1 Xt = X0e
−at + b(1− e−at) + σ

∫ t

0
e−a(t−s)dWs

2 Xt ∼ N
(
µ(Xt), σ(Xt)

2
)
with

µ(Xt) = X0e
−at + b(1− e−at) and σ2(Xt) =

1−e−2at

2a σ2

Solution:
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Problem: Solving Ornstein-Uhlenbeck
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Problem: Solving Ornstein-Uhlenbeck
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Bond Price in the Vasicek Model

We know that the Vasicek model is free of arbitrage, hence we can
formulate it under Q:

drt = a(bQ − rt) dt + σ dWQ
t , bQ = b − λ

σ

a
.

We know that the price of a T -bond is just a derivative with constant
payoff PT (T ) = 1 at maturity T . Pricing under Q:

Pt(T ) = EQ
t

[ Mt

MT
· 1
]
= EQ

t

[
e−

∫ T
t rsds

]
Question: What would be the pricing relation under P?

We first calculate EQ
t

[
1

MT

]
= EQ

t

[
e− logMT

]
.
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Bond Price in the Vasicek Model

Short rate dynamics: drt = a(bQ − rt) dt + σ dWQ
t

Dynamics of the log-MMA: d logMt = rtdt

Consequently,

d(rt + a logMt) = a(bQ − rt) dt + σ dWQ
t + artdt = abQ dt + σ dWQ

t

Integrating and some algebra yields:

logMt =
1

a

[
abQt + σWQ

t − (rt − r0)
]

We know that rt = r0e
−at + bQ(1− e−at) + σ

∫ t
0 e−a(t−s)dWQ

s .
Substituting this solution into logMt yields

logMt =
1

a

[
abQt + σWQ

t + r0

−
(
r0e

−at + bQ(1− e−at) + σ

∫ t

0
e−a(t−s)dWQ

s

)]
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Bond Price in the Vasicek Model

Therefore, logMt follows a normal distribution under Q with

EQ[logMt ] = bQt +
1

a

(
1− e−at

)
(r0 − bQ)

varQ[logMt ] =
σ2

a2

∫ t

0

[
1− e−a(t−s)

]2
ds

=
σ2

a2

[
t − 2

a

(
1− e−at

)
+

1

2a

(
1− e−2at

)]
In turn, − logMT is normally distributed as well.

Now, we can calculate EQ
t

[
1

MT

]
= EQ

t

[
e− logMT

]
, where e− logMT is

log-normally distributed, i.e.,

EQ
t

[
e− logMT

]
= e−EQ[logMT ]+

1
2 var

Q[logMT ]
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Bond Price in the Vasicek Model

Substituting everything we know into this expression, we obtain

EQ[e− logMT
]
= exp

(
−

[
bQ − σ2

2a2
]
T − 1− e−aT

a

[
r0 − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2aT

2a

)
In turn, the current price of a T -bond in the Vasicek model is

P0(T ) = exp
(
−

[
bQ − σ2

2a2
]
T − 1− e−aT

a

[
r0 − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2aT

2a

)
with bQ = b − σλ

a .
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The Yield Curve

The yield curve now follows straightforwardly:

R0(T ) = − 1

T
logP0(T )

=
[
bQ − σ2

2a2
]
+

1− e−aT

aT

[
r0 − bQ +

σ2

a2
]
− σ2

2a2
1− e−2aT

2aT

Taking the limit for super long-term bonds, i.e., T → ∞

R0 := lim
T→∞

R0(T ) = bQ − σ2

2a2

Therefore,

R0(T ) = R0 +
1− e−aT

aT
(r0 − R0) +

σ2

2a2
(1− e−aT )2

2aT
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The Yield Curve
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Empirical Performance

Due to its normality property the Vasicek model is very tractable both
analytically and numerically. In particular, the model can be simulated
exactly by the Euler-scheme.

The empirical performance of the Vasicek model is bad.

The current, observed term structure typically is not matched very well,
i.e.,

R0(T ) = R0 +
1− e−aT

aT
(r0 − R0) +

σ2

2a2
(1− e−aT )2

2aT

is typically not very close to the observed one at time t = 0
This is particularly pronounced if the term structure has a hump.

This issue can be addressed by the Hull-White model

drt = a(t)
(
bQ(t)− rt

)
dt + σ(t) dWQ

t

Using this approach we can ”fit the initial term structure”.

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 185 / 259



Empirical Performance
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Remark: (Non)-negativity

In the Vasicek model, interest rates (yields) can become negative
without lower bound.

This issue can be addressed by the Cox-Ingersol-Ross model

drt = a
(
bQ − rt

)
dt + σ

√
rt dW

Q
t ,

which ensures that interest rates stay positive.

One might want to have negative interest rates, but with a lower
bound, e.g.,

dXt = a
(
bQ − Xt

)
dt + σ

√
Xt dW

Q
t , rt = Xt − ℓ

The CIR model is much less tractable than the Vasicek model
(calculations get much more involved, SDE does not possess an
explicit solution, distribution is non-central χ2, and simulation is
challenging).
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Remarks

We have only studied the case t = 0, but this procedure also works
for t > 0.

We obtain

Pt(T ) = exp
(
−

[
bQ − σ2

2a2
]
(T − t)− 1− e−a(T−t)

a

[
rt − bQ +

σ2

a2
])

· exp
( σ2
2a2

1− e−2a(T−t)

2a

)
Consequently, the price can be written as

P(t, r ;T ) = exp
(
A(t,T ) + B(t,T )rt

)
for functions A(t,T ) and B(t,T ) = −1

a

(
1− e−a(T−t)

)
.

Any short rate model that leads to such a representation of the bond
prices will be called an affine short rate model.
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Problem: Estimation of the Vasicek Model

A standard way to estimate the process rt under P is to run a
regression

rt+∆t = α+ βrt + εt+∆t ,

estimated using OLS (under the usual assumptions).

1 What is the link between α, β, and s2 = var(εt+∆t) and a, b, and σ?

2 Implement a code that estimates the parameters a, b, and σ for given
interest rate data and visualize the regression.

3 Simulate trajectories for the Vasicek model estimated in (2).

Solution: (1)
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Problem: Estimation of the Vasicek Model
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Problem: Data
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(Simulated) short rate data generated with r0 = 0.01, a = 0.25, b = 0.02,
σ = 0.015, ∆t = 0.1.
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Problem: OLS Regression (2)
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Simulated model with α̂ = 8.6844e − 04, β̂ = 0.9645, ŝ = 0.015
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Problem: Simulation (3)
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Regression line with â = − log β̂
∆t = 0.3610, b̂ = α̂

1−β̂
= 0.0245,

σ = ŝ
√

2â/(1− e−2â∆t) = 0.005.
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Recovering observed bond prices

One obvious drawback of the Vasicek model is that it in general does
not match observed bond prices. We describe a way to mend this
which actually can be applied to any term structure model.

Consider a term structure model of the general form

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

rt = h(t,Xt).

Suppose that the forward curve at current time 0 as produced by the
model (F un

0 (T ); “un” for “unadjusted”) does not match the observed
forward curve (F obs

0 (T )). Modify the model as follows:

dXt = µX (t,Xt) dt + σX (t,Xt) dWt

rt = h(t,Xt) + F obs
0 (t)− F un

0 (t).

Now the model does match the observed forward curve, and hence
also the spot yield curve.
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Simplest example

The simplest term structure model is the one in which the short rate
is constant: rt = r . The forward curve is given in this case by

F un
0 (T ) = − d

dT
log P0(T ) = − d

dT
log e−rT = r .

Using the recipe described on the previous slide, we can modify the
model so that it matches the current term structure. The modified
short rate model is:

rt = F obs
0 (t).

This is still a deterministic model. It matches currently observed bond
prices. But it will not match the prices of swaptions, for instance.
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Adjusting the Vasicek model

Now take the Vasicek model (under Q)

drt = a(bQ − rt) dt + σ dWQ
t .

The corresponding forward curve at time 0 is

F un
0 (r0,T ) = e−aT r0 +

(
1− e−aT

)
bQ − σ2

2a2
(
1− e−aT

)2
.

The modified version that matches the current term structure is
(rename the original rt to Xt)

dXt = a(bQ − Xt) dt + σ dWQ
t

rt = Xt + F obs
0 (t)− F un

0 (X0, t).
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Rewrite the model

The modified Vasicek model can be rewritten by taking the
differential of rt :

drt = dXt +
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt

= a(bQ − Xt) dt +
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt + σ dWQ

t

= a
(
bQ − rt + F obs

0 (t)− F un
0 (t)

)
dt

+
d

dt
F obs
0 (t) dt − d

dt
F un
0 (t) dt + σ dWQ

t .

To compute aF un
0 (t) + d

dtF
un
0 (t), use:(

a+
d

dt

)
(e−at) = 0.
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Result: Hull-White model

From F un
0 (T ) = e−aT r0 +

(
1− e−aT

)
bQ − σ2

2a2
(
1− e−aT

)2
we get

aF un
0 (t) +

d

dt
F un
0 (t) = abQ − σ2

2a

(
1− e−2at

)
.

The modified Vasicek model becomes

drt =
(
θ(t)− art

)
dt + σ dWQ

t

with

θ(t) = aF obs
0 (t) +

d

dt
F obs
0 (t) +

σ2

2a

(
1− e−2at

)
.

This is known as the one-factor Hull-White model.
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Affine Term Structure Models

A term structure model is said to be affine if the yield curves that it
produces are of the form

Rt(T ) = α(t,T ) + β(t,T )′Xt

or equivalently,

Pt(T ) = eA(t,T )+B(t,T )′Xt

with α(t,T ) = −A(t,T )
T−t , β(t,T ) = −B(t,T )

T−t

Notation:

α(t,T ) : scalar

β(t,T ) : vector of length n

Xt : n-dimensional process of state variables at time t
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Examples for Affine Term Structure Models

A sufficient condition for a model to be affine is

dXt =
(
Ã(t)Xt − g(t)

)
dt + B̃(Xt)dW

Q
t , rt = h(t)′Xt

Notation:
Xt : n-dimensional process of state variables at time t

Ã(t) : n × n-matrix

B̃(Xt) : n × k matrix such that B̃(Xt)B̃(Xt)
′ is affine in Xt

g(t), h(t) : vectors of length n

WQ : k-dimensional standard Brownian motion under Q

Examples (rt = Xt):

Black-Karasinski: d(log Xt) = a(bQt − log Xt) dt + σ dWQ
t

CIR: dXt = a(bQ − Xt)dt + σ
√
XtdW

Q
t

Dothan: dXt = Xt(a
Qdt + σdWQ

t )
Ho-Lee: dXt = σ2tdt + σdWQ

t

Vasicek / Hull White: dXt = a(bQ − Xt)dt + σdWQ
t
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Term Structure Equation

Remember that bond prices are contingent claims on the short rate
with terminal value of 1.

Let p(t,X ;T ) denote the time-t price of a T -bond. It follows from
the Feynman Kac Theorem that bond prices satisfy the following PDE

∂p

∂t
+∇p · (ÃX − g) + 1

2 tr
(
Hp B̃(X )B̃(X )′

)
= (h′X )p

s.t. p(T ,X ;T ) = 1

Since the model is affine, we can rewrite B̃(X )B̃(X )′ = C̃ + D̃ X .

∂p

∂t
+∇p · (ÃX − g) + 1

2 tr
(
Hp(C̃ + D̃ X )

)
= (h′X )p

In affine models, bond prices are given by

p(t,X ;T ) = eA(t,T )+B(t,T )′Xt

that can be substituted into the TSE yielding ODEs for A and B s.t.
A(T ,T ) = B(T ,T ) = 0.
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Example: Vasicek Revisited

The TSE is given by

∂p(t, r ;T )

∂t
+
∂p(t, r ;T )

∂r
a(bQ − r) + 1

2

∂2p(t, r ;T )

∂r2
σ2 = p(t, r ;T )r

Substituting the conjecture into the TSE

p[Ȧ(t,T ) + Ḃ(t,T )r ] + pB(t,T )a(bQ − r) + 1
2pB(t,T )2σ2 = pr

Dividing by p and separating yields

Ȧ(t,T ) + B(t,T )abQ + 1
2B(t,T )2σ2 + r [Ḃ(t,T )− aB(t,T )− 1] = 0

We obtain two ODEs s.t. A(T ,T ) = B(T ,T ) = 0:

Ȧ(t,T ) + B(t,T )abQ + 1
2B(t,T )2σ2 = 0

Ḃ(t,T )− aB(t,T )− 1 = 0
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Example: Vasicek Revisited

Linear ODE for B: Ḃ(t,T )− aB(t,T )− 1 = 0 (e.g., Feynman-Kac):

B(t,T ) =

∫ T

t
e−a(s−t)(−1)ds = −1

a

(
1− e−a(T−t)

)
Integrating A:

A(t,T ) =

∫ T

t
B(s,T )abQ + 1

2B(s,T )2σ2ds

= . . .

Bond price as it was before

P(t, r ;T ) = exp
(
A(t,T ) + B(t,T )rt

)
.
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Example: Cox-Ingersol-Ross

The TSE is given by

∂p(t, r ;T )

∂t
+
∂p(t, r ;T )

∂r
a(bQ − r) + 1

2

∂2p(t, r ;T )

∂r2
σ2r = p(t, r ;T )r

Substituting the conjecture into the TSE

p[Ȧ(t,T ) + Ḃ(t,T )r ] + pB(t,T )a(bQ − r) + 1
2pB(t,T )2σ2r = pr

Dividing by p and separating yields

Ȧ(t,T ) + B(t,T )abQ + r [Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1] = 0

We obtain two ODEs s.t. A(T ,T ) = B(T ,T ) = 0:

Ȧ(t,T ) + B(t,T )abQ = 0

Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1 = 0
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Example: Cox-Ingersol-Ross

Now, the ODE for B is much more involved, a so-called Riccati
equation.

Ḃ(t,T )− aB(t,T ) + 1
2B(t,T )2σ2 − 1 = 0

For constant coefficients, by guessing B(t,T ) = k Ψt
Ψ for a constant

k , and a function Ψ, it can be transformed into a linear second-order
ODE with well-known solution.

In the end, we obtain:

B(t,T ) = − 2(eγ(T−t) − 1)

eγ(T−t)(γ + a) + γ − a
, γ =

√
a2 + 2σ2

Integrating A:

A(t,T ) =

∫ T

t
B(s,T )abQds =

2abQ

σ2
log

( 2γe0.5(a+γ)(T−t)

(γ + a)(eγ(T−t) − 1) + 2γ

)
A Hull-White-type extension of the CIR model would make the
calculations extremely messy.
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Remarks on Option Pricing

It is also possible to derive closed-form solutions for European call
and put options on zero bonds in affine term structure models.

The option pricing formulas are very similar to the Black-Scholes
formula, but we need another EMM to derive them.

As for bond prices, the option pricing formula for the CIR is
significantly more involved than for the Gaussian models.

We will address this issue in Section 16.

It is also possible to derive closed-form option prices for claims on the
short rate, i.e., options of the form

C (T , rT ) = Φ(rT ).
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Empirical Performance
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Nelson-Siegel Model

Single-factor short rate models are not sufficient to model the whole
TSIR.

In the Nelson-Siegel model, the term structure is fitted by a
deterministic function with four parameters rather than a dynamic
short rate.

Rt(T ) = β0,t +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

This implies the forward rate

Ft(T ) = β0,t + e−at(T−t)β1,t + at(T − t)e−at(T−t)β2,t

We use the notation τt = 1/at .
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Nelson-Siegel Model

Rt(T ) = β0,t1 +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

β0,t : long rate, β0,t + β1,t : short rate, β2,t : size of hump,
τt = 1/at : determines the time of hump
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Nelson-Siegel Model
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Dynamic Nelson-Siegel

Huge drawback: The Nelson-Siegel term structure cannot be
implied by any arbitrage-free short-term model.

Idea: Construct a version of the Nelson-Siegel model with factors
β0,t , β1,t , β2,t that evolve dynamically over time such that the model
reproduces the Nelson-Siegel term structure as close as possible.

Introduce a three-dimensional state process Xt = (β0,t , β1,t , β2,t)
′,

and assume

dXt = µ(t,Xt)dt + σ(t,Xt)dW
Q
t , rt = ρ0(t) + ρ1(t)

′Xt

One can show that for a particular affine parameter choice (see
Christensen et al. 2010), the resulting yield curve is

Rt(T ) = β0,t +
1− e−a(T−t)

a(T − t)
β1,t +

(1− e−a(T−t)

a(T − t)
− e−a(T−t)

)
β2,t

− C (t,T )

T − t
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Dynamic Nelson-Siegel Model

The resulting model is free of arbitrage, and, due to its affine
structure, it has a closed-form solution.
The empirical performance of this arbitrage-free Nelson-Siegel model
(AFNS) is very good.
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(Nelson-Siegel-)Svensson Model

Modification of the Nelson-Siegel Model with six parameters

Rt(T ) = β0,t +
1− e−at(T−t)

at(T − t)
β1,t +

(1− e−at(T−t)

at(T − t)
− e−at(T−t)

)
β2,t

+
(1− e−bt(T−t)

bt(T − t)
− e−bt(T−t)

)
β3,t

This implies the forward rate

Ft(T ) = β0,t + e−at(T−t)β1,t + at(T − t)e−at(T−t)β2,t

+ bt(T − t)e−bt(T−t)β3,t
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Dynamic (Nelson-Siegel-)Svensson Model

Like Nelson-Siegel, also Svensson can be turned into a multi-factor
model, with four factors.

The resulting dynamic Svensson model is also not arbitrage-free (by
construction) for any short-rate model.

But, the dynamic four -factor Svensson model can also be turned into
an arbitrage-free affine five-factor term structure model. However, it
turns out that this requires the introduction of an extra (slope)
factor, together with a non-random correction term.

Rt(T ) = β0,t +
1− e−a(T−t)

a(T − t)
β1,t +

(1− e−a(T−t)

a(T − t)
− e−a(T−t)

)
β2,t

+
1− e−b(T−t)

b(T − t)
β4,t +

(1− e−b(T−t)

b(T − t)
− e−b(T−t)

)
β3,t

− C (t,T )

T − t

Christoph Hambel (TiSEM) Valuation and Risk Management Fall Term 2023 215 / 259



Calibration of the Svensson Model

Given a set of observed bond prices Pobs
0 (C ,N,T1, . . . ,Tn) at time 0.

Calibrate the six parameters π = {β0, β1, β2, β3, a, b} such that
theoretical prices

Pmodel
0 (C ,N,T1, . . . ,Tn) =

n∑
i=1

Ce−R0(Ti )Ti + Ne−R0(Tn)Tn

with

R0(T ) = β0 +
1− e−aT

aT
β1 +

(1− e−aT

aT
− e−aT

)
β2

+
(1− e−bT

bT
− e−bT

)
β3

closely match the observed prices.
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Calibration of the Svensson Model

This can be achieved by an OLS minimization over the parameter set
π = {β0, β1, β2, β3, a, b}:

π̂ = argmin
π

J∑
j=1

wj

[
Pobs,j
0 (C j ,N j ,T j

1, . . . ,T
j
n)

− Pmodel ,j
0 (C j ,N j ,T j

1, . . . ,T
j
n)
]2

ECB estimates the six Svensson parameters daily.

The dynamic versions of those models can be estimated by principal
component analysis.
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Motivation

So far, we have studied interest rate models where the short rate r is
the only explanatory variable.

Main advantages:

Specifying r as the solution of an SDE allows us to use Markov process
theory, so we may work within a PDE framework.
In particular it is often possible to obtain analytical formulas for bond
prices and derivatives.

Main disadvantages:

It is hard to obtain a realistic volatility structure for the forward rates
without introducing a very complicated short rate model.
As the short rate model becomes more realistic, the inversion of the
yield curve becomes increasingly more difficult.

Arbitrage-free Nelson-Siegel Models require more state variables. The
HJM-framework goes beyond that idea and models the whole forward
curve.
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Heath-Jarrow-Morton

The HJM-framework is not a specific model, but a framework for
modeling the forward rates.

We will see that the framework contains the short-rate models as
special cases.

P-dynamics of the forward curve:

dXt = µX (t,Xt)dt + σX (t,Xt)dWt , Ft(T ) = h(t,T ,Xt)

rt = h(t, t,Xt)

where the initial forward curve F0(T ) = h(0,T ,X0) can be observed
on the market.

The HJM framework can, by construction, match the initial term
structure.
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Heath-Jarrow-Morton

The dynamics of the forward rate follow from Itô’s lemma:

dFt(T ) = dh(t,T ,Xt) = µF (t,T ,Xt)dt + σF (t,T ,Xt)dWt

Therefore,

Ft(T ) = F0(T ) +

∫ t

0
µF (s,T ,Xs)ds +

∫ t

0
σF (s,T ,Xs)dWs

rt = F0(t) +

∫ t

0
µF (s, t,Xs)ds +

∫ t

0
σF (s, t,Xs)dWs

One can show that under Q, the drift terms are fully determined by
the specification of the volatility terms σF (t,T ,Xt), and more
precisely ...
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Heath-Jarrow-Morton

Heath-Jarrow-Morton Drift Condition

Assume that the induced bond market is arbitrage free. Then there exists
a k-dimensional column-vector process λ(t,T ,Xt) (market price of risk)
such that

µF (t,T ,Xt) = σF (t,T ,Xt)

∫ t

0
σF (s,T ,Xs)ds + σF (t,T ,Xt)λ(t,T ,Xt)

I skip the proof, and focus on the implications:

Q-dynamics of the forward curve:

dFt(T ) = [µF (t,T ,Xt)− σF (t,T ,Xt)λ(t,T ,Xt)︸ ︷︷ ︸
µQF (t,T ,Xt)

]dt + σF (t,T ,Xt)dW
Q
t

= σF (t,T ,Xt)
(∫ t

0
σF (s,T ,Xs)ds

)
dt + σF (t,T ,Xt)dW

Q
t
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Heath-Jarrow-Morton

Interest Rates under Q

Ft(T ) = F0(T ) +

∫ t

0
σF (s,T ,Xs)

(∫ s

0
σF (τ,T ,Xτ )dτ

)
ds

+

∫ t

0
σF (s,T ,Xs)dW

Q
s

rt = Ft(t)

Recipe for the HJM framework:
1 Specify, by your own choice, the volatilities σF .
2 Determine the drift rate of forward rates under Q:
µQ
F (t,T ,Xt) = σF (t,T ,Xt)

∫ t

0
σF (s,T ,Xs)ds.

3 Go to the market and observe today’s forward rate structure F0(T ).
4 Calculate or simulate the evolution of the term structure Ft(T ).
5 Determine bond prices Pt(T ) = exp(−

∫ T

t
Ft(s)ds).

6 Calculate prices of interest rate derivatives.
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Problem: Special Cases

1 Suppose the forward rate volatility is given by σF (t,T ,Xt) = σ.
Show that this specification implies the Ho-Lee model.

2 Suppose the forward rate volatility is given by
σF (t,T ,Xt) = σe−a(T−t). Show that this specification implies the
Hull-White model.

3 Show that if σF (t,T ,Xt) is a deterministic function of t and T , all
short rates and forward rates are normally distributed. Besides, all
bond prices are log-normally distributed.

Solution:
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Motivation

Since the seminal work of Black (1976) practitioners have been using
the Black76-formula for caplets and floorlets.

A caplet with maturity Ti and strike rate LC on a notional N has
payoff at time Ti :

CTi
= (LTi−1

− LC )
+∆Ti−1

N

where LTi−1
denotes the spot LIBOR rate for [Ti−1,Ti ].

Black (1976) postulates the following pricing formula for t ≤ Ti−1:

Ct = ∆Ti−1
Pt(Ti )Lt(Ti−1,Ti )N · Φ(d1)− Pt(Ti ) · LC∆Ti−1

N · Φ(d2)

where d1 and d2 are very similar to the terms in the Black-Scholes
model.
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The T -Forward Measure

Recall: Numéraire-dependent pricing formula

Ct = NtE
QN
t

[CT

NT

]
.

We have used

Q associated to the MMA
P associated to the numéraire portfolio
QS associated to the stock

For the pricing of interest rate options, it has proven to be useful to
use T -bonds with price Pt(T ) as numéraire.

The corresponding EMM is the so-called T -forward measure QT .

Ct = Pt(T )EQT
t

[
CT

]
.

This measure disentangles discounting and the calculation of the
expectation.
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Problem: T -Forward Measure

Prove that under QT , the instantaneous forward rate F0(T ) is the
expected future short rate rT , i.e.,

F0(T ) = EQT [rT ].

Solution:
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LIBOR Market Model

Model the LIBOR forward rates Lt(Ti−1,Ti ) such that they are
log-normally distributed under the Ti -forward measure.

The LIBOR market model:

dLt(Ti−1,Ti ) = Lt(Ti−1,Ti )σi (t)
′dW

QTi
t

where σi (t) ∈ Rk , WQTi is a k-dimensional Brownian motion.

Remark: From the definition it is not obvious that, given a
specification of σi (t), there exists a corresponding LIBOR market
model. However, it does!

Idea: Model all LIBOR rates under a common reference measure, the
terminal measure QT with T = Tn

dLt(Ti−1,Ti ) = µi (t, Lt)dt + Lt(Ti−1,Ti )σi (t)dW
QT
t
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The Drift Condition

If one chooses the drift rate appropriately, one obtains the desired
LIBOR market specification

dLt(Ti−1,Ti ) = Lt(Ti−1,Ti )σi (t)
′dW

QTi
t

One can show that the required drift specification is

µi (t, Lt) = −Lt(Ti−1,Ti )
n∑

k=i+1

∆Tk−1

1 + Lt(Tk−1,Tk)∆Tk−1

σi (t)
′σk(t),

µn(t, Lt) = 0.

Takeaway: We can model LIBOR rates under the common terminal
measure QT such that LIBOR forward rates Lt(Ti−1,Ti ) are
log-normally distributed martingales under ”their” Ti -forward
measure QTi

.
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Modeling Choices

To complete the LIBOR model, one still needs to specify the number
k of Brownian motions and the volatilities σi (t).

The number k is usually chosen in the range from one to three
(correlation does not affect the prices of plain vanilla options, but of
more complicated products).

The volatilities σi (t) are obtained by calibration to observed price
data, i.e., they are implied volatilities to match prices of interest rate
options. Dependence on time t is often allowed, to ensure sufficient
flexibility. σi (t) is typically a piecewise constant scalar function with
jumps at the reset dates.

Use this calibrated model to determine the prices of more complex
products.

Note: the LIBOR market model does not specify the short rate
process and can only price a limited range of term structure products
in closed-form.
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The Black76 Formula

Under the Ti -forward measure, the LIBOR forward rate Lt(Ti−1,Ti )
is a martingale and it is log-normally distributed. Hence, we are in a
similar situation as in the Black-Scholes model.

Straightforward calculations show that the price of a caplet is given by

Ct = Pt(Ti )
[
Lt(Ti−1,Ti ) · Φ(d1)− LC · Φ(d2)

]
∆Ti−1

N

where

d1 =
log

(Lt(Ti−1,Ti )
LC

)
+ 1

2Σi (t,Ti−1)
2

Σi (t,Ti−1)

d2 = d1 − Σi (t,Ti−1)

Σi (t,Ti−1)
2 =

∫ Ti−1

t
∥σi (s)∥2ds
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Comparison to Black-Scholes
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Some Remarks

There is a one-to-one mapping between the volatility and the caplet
price. There is no ambiguity in quoting the price of a caplet simply by
quoting its ”Black volatility” or implied volatility.

Caps and floors have the same implied volatility for a given strike.

As negative interest rates became a possibility, the Black model
became increasingly inappropriate. Many variants have been
proposed, including shifted log-normal and normal, though a new
standard is yet to emerge.

There is a very general option pricing formula for a European call
option with strike K and maturity T on an underlying S . One can
show that under mild assumptions the price of a European call option
has always the form

Ct = StQS(ST > K )− Pt(T )KQT (ST > K ).

where QS is an EMM that takes the underlying as numéraire, and QT

is the T -forward measure.
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General Option Pricing Formula

This formula holds for any arbitrage-free financial market model.

Suppose the process Ŝt =
St

Pt(T ) satisfies a stochastic differential
equation of the form

dŜt = Ŝtµ(t,T )dt + Ŝtσ(t,T )dWt ,

Then, the price of the call option is

Ct = StN(d1)− Pt(T )K N(d2)

with

d1 =
log

(
St

K Pt(T )

)
+ 1

2Σ(t,T )2

Σ(t,T )

d2 = d1 − Σ(t,T )

Σ(t,T )2 =

∫ T

t
∥σ(s,T )∥2ds
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Problem: Option Pricing in the Hull-White Model

1 Derive the price of a European call option on a T2-bond with strike
price K and maturity in T1 < T2 in the Hull-White model,

drt = a(bQ(t)− rt)dt + σdWQ
t

2 Explain the differences between your result and the option price in the
Vasicek model.

Solution:
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Problem: Option Pricing in the Hull-White Model
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Swap Market Model

The swap market model is a variant of the LIBOR market model.

In the swap market model, par swap rates are modeled to be
log-normally distributed, rather than LIBOR rates.

The swap market model is commonly used to price swaptions, i.e.,
options on swap contracts, for which a variant of the Black76 formula
exists.

It can be shown that LIBOR market models and swap market models
are incompatible, i.e., par swap rates are not log-normally distributed
in the LIBOR market model, and LIBOR rates are not log-normally
distributed in swap market models.
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Part VII

A Brief Introduction to Credit Risk
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Motivation

So far, we have considered discount factors and term structures
related to default-free bonds.

In reality there is always credit risk, i.e., the risk of default from an
issuer of a bond (the borrower) failing to make the payments

Definition: Credit Risk

Credit risk is the risk that the holder of a financial asset experiences a loss
because of

a debtor’s non-payment of a loan or other line of credit (either the principal
or interest (coupon) or both)

a default by the counterparty in a derivatives transaction.

Credit risk differs from market risk since

default is a 0-1-event
default risk is harder to measure
default risk cannot be hedged away by a market index
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How to Quantify Credit Risk?

There are two dimensions of credit risk:
1 How likely is a default?
2 How big is the loss if a default occurs?

These dimensions are captured by the
1 default probability (PD),
2 loss given default (LGD), Lτ .

Recovery rate Rτ = 1− Lτ

Can these quantities be identified from historical data? For instance,
BASF has never defaulted. Does this mean that its default probability
is zero?

Idea: Back out credit risk from the prices of credit derivatives and
corporate bonds.
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Intensity Model

We are now going to introduce discount factors corresponding to
defaultable zero coupon bonds.

Let the defaultable zero coupon bond’s maturity be T and its face
value be 1. Denote its value at time t ≤ T by Pd

t (T ).

Modeling credit risk is usually done by introducing a random (first)
default time τ ∈ R+.

In case of no default (τ > T ), the bond pays off 1 at time T .
In case of default (τ ≤ T ), the bond pays off Rτ = 1− Lτ at time T .

Here Lτ ∈ (0, 1] is the loss rate.

The default time τ is modeled as the first jump of a counting process
(typically a Poisson or a Cox process) Nt ∈ N, i.e.,

τ = min{t | Nt = 1}
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Poisson and Cox Processes

A Poisson process N is an increasing process taking values in N (a
so-called counting process) with

1 N0 = 0
2 independent increments
3 the number of events (or points) in any interval of length t is a Poisson

random variable with mean λt.

The parameter λ is called the jump intensity (or default intensity, or
hazard rate) and models the instantaneous default probability, i.e.,

λ = lim
∆t→0

P(Nt+∆t > Nt)

∆t

If the parameter λ is itself a non-negative stochastic process, we call
N a Cox process. A typical choice is that λ is of the CIR type, i.e.,

dλt = a(b − λt)dt + σ
√
λtdWt
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Poisson and Cox Processes
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Interpretation of Default Intensity

Consider a Poisson process NQ with intensity λQ under Q. Default
happens if the first jump of N happens before maturity.

Probability of default under Q

Q(τ ≤ T ) = Q(NT ≥ 1) = 1−Q(NT = 0) =(3) 1− e−λ
QT

In particular, the one-year default probability is

Q(τ < 1) = 1− e−λ
Q ≈ λQ

Consequently, the default intensity is approximately the one-year
probability of default.

In reality, default probabilities are not constant, but depend on
macroeconomic indicators and firm-specific variables.
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Basic Relations

Standing assumption: Default intensity λt , short rate rt , and recovery
rate Rt are stochastically independent.

Under this assumption, interest rate risk can be disentangled from
default risk.

Pd
0 (T ) = EQ[e− ∫ T

0 rsds1{τ>T} + e−
∫ T
0 rsds1{τ≤T}Rτ

]
= EQ[e− ∫ T

0 rsds
]
Q(τ > T ) + EQ[e− ∫ T

0 rsds
]
Q(τ ≤ T )EQ[Rτ ]

= P0(T )
(
Q(τ > T ) +Q(τ ≤ T )EQ[Rτ ]

)
= P0(T )

(
1− EQ[Lτ ]Q(τ ≤ T )

)
= P0(T )

(
1− EQ[Lτ ]

(
1− EQ[e− ∫ T

0 λQs ds
]))
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Credit Spread

The credit spread between both bonds:

Sd
0 (T ) = Rd

0 (T )− R0(T )

= − 1

T
logPd

0 (T ) +
1

T
logP0(T )

= − 1

T
log

(
1− EQ[Lτ ]

(
1− EQ[e− ∫ T

0 λQs ds
]))

≈ 1

T
EQ[Lτ ]

(
1− EQ[e− ∫ T

0 λQs ds
])

If the default intensity λ is constant:

Sd(T ) ≈ 1

T
EQ[Lτ ](1− e−λ

QT )

≈ λQEQ[Lτ ]

Rule of thumb: Yield spread between corporate bond and Treasury
bond approximately equals the expected one-year loss due to default
risk under the risk-neutral measure.
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Credit Spread
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Some Remarks

A thorough quantitative analysis of credit risk requires Itô calculus
with jump processes.

Term structure equations become more complicated as they involve
jump terms.

If both the short rate process and the intensity process are affine,
then the corporate bond prices before default are affine as well, i.e.,

Pd
t (T )1{t<τ} = eA

d (t,T )+Bd (t,T )rt+Cd (t,T )λt

Jump processes are also commonly used to model stock market
crashs. A simple example is the Merton Jump-Diffusion model

dSt = Stµdt + StσdWt + StℓtdNt .
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Idea: Merton’s Firm Value Model
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Merton’s Firm Value Model

Firm has debt – modeled by a zero bond with
notional F
maturity at time T
default only at time T possible

At T : Redemption depends on the firm value VT

DT = min{VT ,F}

If VT < F : default.
=⇒ Loss given default: L = F − VT

Shareholders get the residuum

ET = VT − DT

= VT −min{VT ,F}
= max{VT − F , 0}

=⇒ Equity is a call option on the firm value with maturity at time T
and strike price F .
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Merton’s Firm Value Model

Source: Moody’s Research Analytics
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Merton’s Firm Value Model

Model the firm value like the stock price in the Black-Scholes model
(V is log-normally distributed)

Equity is a call option on the firm value
=⇒ Black-Scholes formula delivers:

E0 = V0Φ(d1)− Fe−rTΦ(d2)

D0 = V0 − E0 = Fe−Rd (T )T

d1 =
ln(V0/F ) + (r + 0.5σ2)T

σ
√
T

d2 = d1 − σ
√
T

Credit spread:

S0(T ) =
1

T
log

( F

D0

)
− r
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Merton’s Firm Value Model

Weaknesses

Same weaknesses as the Black-Scholes model (e.g., constant volatility,
interest rates)
V is typically not traded (but E ).=⇒ How do we know σ?

σ
Φ
(
d1(σ)

)
E (σ)

=
σE
V

Very simplistic debt policy. Firms do not emit just one zero bond. In
reality, they emit several coupon bonds, mortgages, and other forms of
credit contracts with different maturities.

However, economic implications are quite plausible.

Firm value model acts as a building block for many
practically-relevant models (e.g., Moody’s KMV Model, J.P. Morgans’
Credit Metrics, ...)

Popular alternative model in credit risk management: Credit Risk+
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