Agenda

- Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
 - Model Setup
 - Indirect Utility and Wealth-Consumption Ratio
 - Pricing Kernel, Risk-Free Rate, and MPR
 - Pricing of the Dividend Claim
- Objective to the property of the following of the property of the property

Bansal and Yaaron (2004) – Model Setup

Endowment economy with long-run risk component and stochastic volatility

$$\Delta c_{t+1} = \mu_c + \mathbf{y_t} + \sigma_t \eta_{c,t+1}$$

$$\Delta d_{t+1} = \mu_d + \phi_d \mathbf{y_t} + \psi_d \sigma_t \left(\rho_{cd} \eta_{c,t+1} + \sqrt{1 - \rho_{cd}^2} \eta_{d,t+1} \right)$$

$$\Delta \mathbf{y_{t+1}} = (\rho - 1) \mathbf{y_t} + \psi_y \sigma_t \eta_{y,t+1}$$

$$\Delta \sigma_{t+1}^2 = (\nu - 1) (\sigma_t^2 - \sigma^2) + \sigma_v \eta_{v,t+1}$$

- Recursive Preferences with risk aversion γ and EIS ψ .
- In Bansal and Yaaron (2004), the notation is slightly different, LRR-factor is denoted by x.
- Remarkable properties:
 - Stochastic volatility σ .
 - Long-run risk component in y in consumption and dividend dynamics.
 - Dividends are potentially more volatile than consumption.

Bansal and Yaaron (2004) – The long-run risk factor

Bansal and Yaron (2004) – Solution Approaches

- No closed-form solution available as returns are not normally distributed.
- Numerical solution approach
 - Done by Bansal and Yaron (2004).
 - Numerical solutions are hard to interpret.
 - Requires a lot of analyses to point out how a certain parameter affects the solution.
- Approximate closed-form solution can be achieved
 - Done by Bansal and Yaron (2004) to gain intuition.
 - Approximate growth rates by a linear function of state variables, see Campbell-Shiller (1998).
 - Changes in growth rates approximately follow a joint normal distribution.

Agenda

- Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
 - Model Setup
 - Indirect Utility and Wealth-Consumption Ratio
 - Pricing Kernel, Risk-Free Rate, and MPR
 - Pricing of the Dividend Claim
- 6 Disaster Risk and Asset Pricing

Campbell-Shiller Approximation

- The Campbell-Shiller (1988)-approximation linearizes the relation between asset returns, dividend growth and price dividend-ratios.
- Log-return of an asset

$$\begin{split} r_{t+1} &= \log \left(\frac{P_{t+1} + D_{t+1}}{P_t} \right) \\ &= \log(P_{t+1} + D_{t+1}) - \log(P_t) \\ &= \log \left(\frac{P_{t+1} + D_{t+1}}{D_{t+1}} \right) + \log(D_{t+1}) - \log(P_t) \\ &= \log \left(1 + \frac{P_{t+1}}{D_{t+1}} \right) + \log(D_{t+1}) - \log(D_t) + \log(D_t) - \log(P_t) \\ &= \log \left(1 + e^{z_{t+1}} \right) + \Delta d_{t+1} - z_t \end{split}$$

where $z_{t+1} = \log(P_{t+1}/D_{t+1})$ is the log price-dividend ratio.

Campbell-Shiller Approximation

• First-order Taylor approximation to the function $f(z) = \log(1 + e^z)$ around the average log price-dividend ratio $\overline{z} = \overline{p} - \overline{d}$.

Campbell-Shiller Approximation

The log return r_{t+1} of an asset with dividend growth rate Δd_{t+1} and log price-dividend ratio z_t is approximately equal to

$$r_{t+1} \approx \kappa_0 + \kappa_1 z_{t+1} - z_t + \Delta d_{t+1}$$

with

$$\kappa_0 = \log(1+\mathrm{e}^{\overline{z}}) - \overline{z} \frac{\mathrm{e}^{\overline{z}}}{1+\mathrm{e}^{\overline{z}}}, \qquad \kappa_1 = \frac{\mathrm{e}^{\overline{z}}}{1+\mathrm{e}^{\overline{z}}} < 1.$$

Proof. In class

 Remark: For unit EIS, the Campbell-Shiller approximation is the correct solution.

Proof: Campbell-Shiller Approximation

Proof: Campbell-Shiller Approximation

Wealth-Consumption Ratio

Recall from the previous section: the log pricing kernel is

$$m_{t,t+1} = -\delta\theta - \frac{\theta}{\psi}\Delta c_{t+1} + (\theta - 1)r_{x,t+1}$$

where $\theta=\frac{1-\gamma}{1-1/\psi}$, Δc_{t+1} is log-consumption growth, and $r_{t+1}^{\mathsf{x}}=\Delta x_{t+1}$ is the gross return on total wealth.

Pricing the consumption claim

$$X_{t} = \mathbb{E}_{t}[M_{t,t+1}X_{t+1}]$$

$$\Rightarrow 1 = \mathbb{E}_{t}[e^{m_{t,t+1}+\Delta x_{t+1}}]$$

$$= \mathbb{E}_{t}\left[e^{-\delta\theta - \frac{\theta}{\psi}\Delta c_{t+1} + (\theta-1)\Delta x_{t+1} + \Delta x_{t+1}}\right]$$

$$= \mathbb{E}_{t}\left[e^{-\delta\theta - \frac{\theta}{\psi}\Delta c_{t+1} + \theta\Delta x_{t+1}}\right]$$

$$\approx \mathbb{E}_{t}\left[e^{-\delta\theta - \frac{\theta}{\psi}\Delta c_{t+1} + \theta(\kappa_{0} + \kappa_{1}z_{t+1} - z_{t} + \Delta c_{t+1})}\right]$$

$$= \mathbb{E}_{t}\left[e^{-\delta\theta + (1-\gamma)\Delta c_{t+1} + \theta(\kappa_{0} + \kappa_{1}z_{t+1} - z_{t})}\right]$$

Wealth-Consumption Ratio

Proposition – Affine Wealth-Consumption Ratio

Suppose that the Campbell-Shiller Approximation holds true. The wealth consumption ratio is affine in the state variables

$$z_t = A_0 + A_y y_t + A_\sigma \sigma_t^2$$

where

$$\begin{aligned} A_y &= \frac{1 - 1/\psi}{1 - \kappa_1 \rho} \\ A_\sigma &= \frac{(1 - \gamma)(1 - 1/\psi)}{2(1 - \kappa_1 \nu)} \left(1 + \left[\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho}\right]^2\right) \\ A_0 &= \dots \end{aligned}$$

Proof. Exercise

Wealth-Consumption Ratio – Approach

CS-approximation implies

$$1 \approx \mathbb{E}_t \left[e^{-\delta \theta + (1 - \gamma) \Delta c_{t+1} + \theta (\kappa_0 + \kappa_1 z_{t+1} - z_t)} \right]$$

- Substitute the conjecture $z_t = A_0 + A_y y_t + A_\sigma \sigma_t^2$ into the pricing equation.
- Simplify as much as you can and calculate the cond. expectation.
- You'll get an equation $T_0 + T_y y_t + T + T_\sigma \sigma_t^2 = 0$.
- This leads to a system $T_0 = 0$, $T_y = 0$, $T_\sigma = 0$.
- Solve this system for A_0 , A_y , and A_σ .

Discussion of Wealth-Consumption Ratio

Exposure to long-run risk y_t

$$A_y = \frac{1 - 1/\psi}{1 - \kappa_1 \rho}$$

- From the data, we know that $P/D = e^z \approx 25$.
- Therefore, $\kappa_1 = \frac{e^{\overline{z}}}{1+e^{\overline{z}}} \approx 1$.
- Since $\rho < 1$, the denominator is positive.
- Exposure to LRR is positive iff $\psi > 1$.
- Exposure to stochastic volatility

$$A_{\sigma} = \frac{(1-\gamma)(1-1/\psi)}{2(1-\kappa_1\nu)} \left(1 + \left[\frac{\kappa_1\psi_y}{1-\kappa_1\rho}\right]^2\right)$$

- Since $\nu < 1$, the denominator is positive.
- Exposure to stochastic volatility is positive iff $(1 \gamma)(1 1/\psi) > 0$, i.e., $\theta > 0$.

Indirect Utility

• The indirect utility is given by

$$J_t = \alpha^{\frac{1}{1-1/\psi}} \left(\frac{C_t}{X_t}\right)^{\frac{1}{1-\psi}} X_t$$
$$= \alpha^{\frac{1}{1-1/\psi}} e^{Z_t \frac{1}{\psi-1}} X_t$$

- $\psi > 1$: indirect utility is increasing in wealth-consumption ratio.
- investor does not care much about consumption smoothing over time, substitution effect dominates wealth effect.
- The opposite is true for $\psi < 1$.
- How does J react to variation in the state variables?

Indirect Utility and LRR

The indirect utility is approximately given by

$$J_t \approx \alpha^{\frac{1}{1-1/\psi}} \mathrm{e}^{(A_0 + A_y y_t + A_\sigma \sigma^2) \frac{1}{\psi - 1}} X_t$$

Influence of the LRR-factor

$$\frac{\partial J_t}{\partial y_t} \approx \frac{\alpha^{\frac{1}{1-1/\psi}}}{(1-\kappa_1 \rho)\psi} e^{(A_0 + A_y y_t + A_\sigma \sigma_t^2) \frac{1}{\psi-1}} X_t > 0$$

- High y is always good news. For larger y, investment opportunities become more attractive.
- ullet Consider the case $\psi>1$
 - Agent wants to smooth less over time than the log-investor.
 - Substitution effect dominates the income effect.
 - She reacts to good investment opportunities by saving more and consuming less, which increases his wealth-consumption ratio.
 - Wealth increases as consumption is exogenous.

Indirect Utility and Stochastic Volatility

Influence of the stochastic volatility

$$\frac{\partial J_t}{\partial (\sigma_t^2)} \approx (1 - \gamma) \alpha^{\frac{1}{1 - 1/\psi}} e^{z_t \frac{1}{\psi - 1}} X_t \frac{1}{2(1 - \kappa_1 \nu)} \left(1 + \left[\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho} \right]^2 \right)$$

- High volatility is thus
 - ullet bad news for $\gamma>1$: Investor worries about increased uncertainty.
 - ullet good news for $\gamma < 1$: investor is happy about upside potential.
- Consider the case $\psi > 1$, $\gamma > 1$:
 - large σ_t is bad news for the investor.
 - investor with $\psi>1$ reacts to bad investment opportunities by consuming more today.
 - wealth-consumption ratio decreases $(A_{\sigma} < 0)$.

Agenda

- Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
 - Model Setup
 - Indirect Utility and Wealth-Consumption Ratio
 - Pricing Kernel, Risk-Free Rate, and MPR
 - Pricing of the Dividend Claim
- Objective to the property of the following of the property of the property

Plan for Asset Pricing

- We can calculate the pricing kernel using the Campbell-Shiller approximation
- The pricing kernel dynamics will give further insight on
 - risk-free rate
 - market prices of risk
- Once we have the pricing kernel, we can calculate the price of the dividend claim and its risk premium.

Pricing Kernel

Remember, the log pricing kernel is given by

$$m_{t,t+1} = -\delta heta - rac{ heta}{\psi} \Delta c_{t+1} + (heta - 1) r_{t+1}^{ imes}$$

 Substitute the Campbell-Shiller approximation into the log pricing kernel

$$m_{t,t+1} = -\delta heta - rac{ heta}{\psi} \Delta c_{t+1} + (heta - 1)(\kappa_0 + \kappa_1 z_{t+1} - z_t + \Delta c_{t+1})$$

ullet It is easy to check that $heta-1-rac{ heta}{\psi}=-\gamma$, hence

$$m_{t,t+1} = -\delta\theta - (1-\theta)\kappa_0 + (1-\theta)z_t - (1-\theta)\kappa_1 z_{t+1} - \gamma \Delta c_{t+1}$$

Pricing Kernel

 Substitute the solution for the wealth-consumption ratio into the log pricing kernel

$$m_{t,t+1} = -\delta\theta - (1-\theta)\kappa_0 + (1-\theta)(A_0 + A_y y_t + A_{\sigma\sigma_t}^2) - (1-\theta)\kappa_1(A_0 + A_y y_{t+1} + A_{\sigma\sigma_{t+1}}^2) - \Delta c_{t+1}$$

 Substitute the dynamics of the state variables into the log pricing kernel. We end up with

$$\begin{split} m_{t,t+1} &= -\delta\theta - (1-\theta)\kappa_0 + (1-\theta)(1-\kappa_1)A_0 - \gamma\mu_c \\ &- (1-\theta)\kappa_1 A_{\sigma}(1-\nu)\sigma^2 \\ &+ \left[(1-\theta)A_{y}(1-\kappa_1\rho) - \gamma \right] y_t \\ &+ (1-\theta)A_{\sigma}(1-\kappa_1\nu)\sigma_t^2 \\ &- (1-\theta)\kappa_1 A_{y}\psi_y \sigma_t \eta_{y,t+1} - (1-\theta)\kappa_1 A_{\sigma}\sigma_v \eta_{v,t+1} \\ &- \gamma\sigma_t \eta_{c,t+1}. \end{split}$$

Pricing Kernel

• Plugging A_0 into the pricing kernel and some painful calculations lead to

$$\begin{split} m_{t,t+1} &= -\delta - \frac{1}{\psi} \mu_c - \frac{1}{\psi} y_t + \frac{1}{2} \theta (1 - \theta) \kappa_1^2 A_\sigma^2 \sigma_v^2 \\ &+ \frac{1}{2} \left(\gamma - \frac{1}{\psi} \right) (1 - \gamma) \left[1 + \left(\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho} \right)^2 \right] \sigma_t^2 \\ &- (1 - \theta) \kappa_1 A_y \psi_y \sigma_t \eta_{y,t+1} - (1 - \theta) \kappa_1 A_\sigma \sigma_v \eta_{v,t+1} \\ &- \gamma \sigma_t \eta_{c,t+1}. \end{split}$$

- With EZ-utility, shocks to state variables $(y_t \text{ and } \sigma_t)$ are priced.
- Notice that for CRRA-utility $\theta=1$, i.e.,

$$m_{t,t+1} = -\delta - \frac{1}{\psi}(\mu_c + y_t) - \gamma \sigma_t \eta_{c,t+1}.$$

Market Prices of Risk

Market Price of Risk

Suppose the Campbell-Shiller approximation holds true.

• The market price of risk for a shock to consumption growth $\sigma_t \eta_{c,t+1}$ is given by

$$\lambda_c = \gamma$$
.

 \bullet The market price of risk for a shock to the LRR factor $\sigma_t\eta_{y,t+1}$ is given by

$$\lambda_y = (1 - \theta)\kappa_1 A_y \psi_y = \left(\gamma - \frac{1}{\psi}\right) \frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho}$$

ullet The market price of risk for a shock to volatility $\sigma_{\scriptscriptstyle V} \eta_{\scriptscriptstyle V,t+1}$ is given by

$$\lambda_{\sigma} = (1 - \theta)\kappa_1 A_{\sigma} = (1 - \gamma) \left(\gamma - \frac{1}{\psi}\right) \frac{\kappa_1}{2(1 - \kappa_1 \nu)} \left[1 + \left(\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho}\right)^2\right]$$

Some Remarks

- Bansal and Yaron (2004) define the MPR λ_c of the shock $\sigma_t \eta_{t+1}$ \rightarrow Sensitivity of the log pricing kernel w.r.t. $\sigma_t \eta_{t+1}$.
- Other authors define the MPR $\widehat{\lambda}_c$ as the sensitivity w.r.t. $\eta_{t+1} \sim \mathcal{N}(0,1)$.
 - \rightarrow Typically done in continuous time
- Then, $\widehat{\lambda}_c$ is the Sharpe ratio

$$\widehat{\lambda}_c = \frac{\mathrm{rp}_t}{\sigma_t} = \gamma \sigma_t$$

instead of

$$\lambda_c = \frac{\mathrm{rp}_t}{\sigma_t^2} = \gamma$$

• In continuous time, there is a crucial relation between the MPR $\widehat{\lambda}_c$ and the change of measure from $\mathbb P$ to $\mathbb Q$.

Some Remarks

- Higher market prices of risk indicate higher risk premia.
- An agent with CRRA-utility ($\theta = 1$) does not price the state variable risk:

$$\lambda_{\sigma} = \lambda_{y} = 0.$$

and the market price of consumption risk is the same as for recursive utility,

$$\lambda_c = \gamma$$
.

- In a model without stochastic volatility and LRR, the market price of risk for a shock to consumption growth is the same.
- Consequently, Epstein-Zin only thus does not help to solve the equity premium puzzle.

Market Price of Risk for LRR

Market price of risk for a shock to the LRR factor

$$\lambda_y = \left(\gamma - \frac{1}{\psi}\right) \frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho}.$$

- increases in ρ , i.e., in the permanence of shocks.
- increases in $\psi_{\rm V}$, i.e., in volatility of shocks.
- is positive iff $\gamma>1/\psi$ (preferences for early resolution of uncertainty).
- an asset which has a high payoff when investment opportunities are good makes future consumption more risky, investor would prefer to eliminate this risk today

Market Price of Risk for Stochastic Volatility

Market price of risk for a shock volatility

$$\lambda_{\sigma} = (1 - \gamma) \left(\gamma - \frac{1}{\psi} \right) \frac{\kappa_1}{2(1 - \kappa_1 \nu)} \left[1 + \left(\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho} \right)^2 \right]$$

- is negative if $\gamma>1$ and $\gamma>\frac{1}{\psi}$, i.e., if
 - investor is more risk-averse than log investor (in this case, a high volatility is bad news and signals worse investment opportunities)
 - investor has preference for early resolution of uncertainty

or if
$$\gamma < 1$$
 and $\gamma < \frac{1}{\psi}$, i.e., if

- investor is less risk-averse than log investor
- investor has preference for late resolution of uncertainty
- increases in permanence of long-run risk shocks (ρ) and volatility shocks (ν).

Risk-Free Rate

Pricing Equation for the risk-free asset

$$\mathbb{E}_t[\mathrm{e}^{m_{t,t+1}}] = \mathrm{e}^{-r_t^f}$$

Therefore.

$$r_t^f = -\ln\left(\mathbb{E}_t[e^{m_{t,t+1}}]\right)$$

$$= -\mathbb{E}_t[m_{t,t+1}] - \frac{1}{2}\mathrm{var}_t[m_{t,t+1}]$$

$$= \delta + \frac{1}{\psi}\mu_c + \frac{1}{\psi}y_t - \frac{1}{2}\theta(1-\theta)\kappa_1^2 A_\sigma^2 \sigma_v^2$$

$$- \frac{1}{2}\left(\gamma - \frac{1}{\psi}\right)(1-\gamma)\left[1 + \left(\frac{\kappa_1 \psi_y}{1-\kappa_1 \rho}\right)^2\right] \sigma_t^2$$

$$- 0.5\lambda_c^2 \sigma_t^2 - 0.5\lambda_v^2 \sigma_t^2 - 0.5\lambda_\sigma^2 \sigma_v^2$$

Risk-Free Rate

• Substituting the market prices of risks into the risk-free rate and some algebra leads to the following result:

Risk-free Rate

Suppose the Campbell-Shiller approximation holds true. The risk-free rate is (standard for EZ, standard but state-dependent; new components)

$$\begin{split} r_t^f &= \delta + \frac{1}{\psi} \Big(\mu_c + y_t + \frac{1}{2} \sigma_t^2 \Big) - \frac{1}{2} \gamma \Big(1 + \frac{1}{\psi} \Big) \sigma_t^2 \\ &- \frac{1}{2} (1 - \theta) \kappa_1^2 A_\sigma^2 \sigma_v^2 \\ &- \frac{1}{2} \Big(\gamma - \frac{1}{\psi} \Big) \Big(1 - \frac{1}{\psi} \Big) \Big(\frac{\kappa_1 \psi_y}{1 - \kappa_1 \rho} \Big)^2 \sigma_t^2 \end{split}$$

Risk-Free Rate

- Consider the case $\psi >$ 1, $\gamma >$ 1, i.e., $\theta <$ 0 as in Bansal and Yaron (2004).
- First three terms: standard
 - sensitivity of interest rate to consumption growth: $\frac{1}{\psi}$
 - ullet typically much lower than $\gamma.$
 - interest rate goes down compared to CRRA.
- Impact of volatility risk depends on fourth and fifth term
 - Additional precautionary savings term for stochastic volatility.
 - sensitivity is proportional to $\left(\gamma \frac{1}{\psi}\right)\left(1 \frac{1}{\psi}\right) > 0$.
 - interest rate goes down compared to CRRA.

Agenda

- Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
 - Model Setup
 - Indirect Utility and Wealth-Consumption Ratio
 - Pricing Kernel, Risk-Free Rate, and MPR
 - Pricing of the Dividend Claim
- Objective to the property of the following of the property of the property

Consider a general dividend claim with dividend growth

$$\Delta \textit{d}_{t+1} = \mu_\textit{d} + \phi_\textit{d} \textit{y}_t + \psi_\textit{d} \sigma_t \Big(\rho_\textit{cd} \eta_\textit{c,t+1} + \sqrt{1 - \rho_\textit{cd}^2} \eta_\textit{d,t+1} \Big)$$

• Campbell-Shiller approximation

$$r_{t+1} = \kappa_0 + \kappa_1 z_{t+1} - z_t + \Delta d_{t+1}$$

Conjecture: affine structure of the log price-dividend ratio

$$z_t = A_0 + A_y y_t + A_\sigma \sigma_t^2$$

• Return on this claim is thus

$$r_{t+1} = \kappa_0 + \kappa_1 (A_0 + A_y y_{t+1} + A_\sigma \sigma_{t+1}^2) - (A_0 + A_y y_t + A_\sigma \sigma_t^2) + \Delta d_{t+1}$$

 Substituting everything we know into the previous equation and simplifying a lot yields...

Proposition

Suppose that the Campbell-Shiller approximation holds. With the risk factors defined as above, the return on the dividend claim is

$$r_{t+1} = \mu_d + \kappa_0 + (\kappa_1 - 1)A_0 + \kappa_1 A_{\sigma} (1 - \nu)\sigma^2$$

$$+ [\phi_d - (1 - \kappa_1 \rho)A_y]y_t - (1 - \kappa_1 \nu)A_{\sigma}\sigma_t^2$$

$$+ \beta_y \sigma_t \eta_{y,t+1} + \beta_{\sigma} \sigma_{\sigma} \eta_{\sigma,t+1}$$

$$+ \beta_c \sigma_t \eta_{c,t+1} + \beta_d \sigma_t \eta_{d,t+1}$$

where the risk exposures are

$$\begin{split} \beta_c &= \rho_{cd} \psi_d, & \beta_d &= \sqrt{1 - \rho_{cd}^2} \psi_d, \\ \beta_y &= \kappa_1 A_y \psi_y, & \beta_\sigma &= \kappa_1 A_\sigma, \end{split}$$

Proposition (continued)

... where the log price-dividend ratio is given by

$$z_t = A_0 + A_y y_t + A_\sigma \sigma_t^2$$

with

$$A_{y} = \frac{\phi_{d} - \frac{1}{\psi}}{1 - \kappa_{1}\rho}$$

$$A_{\sigma} = \frac{\frac{1}{2}(\beta_{y} - \lambda_{y})^{2} + \frac{1}{2}\psi_{d}^{2} - \rho_{cd}\psi_{d}\gamma + (1 - \theta)(1 - \kappa_{1}\nu)A_{\sigma}^{wcr} + \frac{1}{2}\gamma^{2}}{1 - \kappa_{1}\nu}$$

$$A_{0} = \dots$$

Therefore, for the return on the dividend claim it holds

$$r_{t+1} = \mathbb{E}_t[r_{t+1}]$$

$$+ \beta_y \sigma_t \eta_{y,t+1} + \beta_\sigma \sigma_\sigma \eta_{\sigma,t+1}$$

$$+ \beta_c \sigma_t \eta_{c,t+1} + \beta_d \sigma_t \eta_{d,t+1}$$

The betas give the risk exposures and the expected excess return is (standard, new components)

$$\mathbb{E}_{t}[r_{t+1}] + \frac{1}{2} \operatorname{var}_{t}[r_{t+1}] - r_{t}^{f}$$
$$= \beta_{c} \sigma_{t}^{2} \lambda_{c} + \beta_{y} \sigma_{t}^{2} \lambda_{y} + \beta_{\sigma} \sigma_{\sigma}^{2} \lambda_{\sigma}.$$

• Notice that the market price of dividend risk is zero.

Components of the Risk Premium

Bansal and Yaron (2004): Empirical Results

γ	ψ	$E(R_m - R_f)$	$E(R_f)$	$\sigma(R_m)$	$\sigma(R_f)$	$\sigma(p-d)$
		Panel	A: $\phi = 3.0$, $\rho =$	= 0.979		
7.5	0.5	0.55	4.80	13.11	1.17	0.07
7.5	1.5	2.71	1.61	16.21	0.39	0.16
10.0	0.5	1.19	4.89	13.11	1.17	0.07
10.0	1.5	4.20	1.34	16.21	0.39	0.16
		Panel	B: $\phi = 3.5$, $\rho =$	= 0.979		
7.5	0.5	1.11	4.80	14.17	1.17	0.10
7.5	1.5	3.29	1.61	18.23	0.39	0.19
10.0	0.5	2.07	4.89	14.17	1.17	0.10
10.0	1.5	5.10	1.34	18.23	0.39	0.19
		Panel	C: $\phi = 3.0, \rho =$	$= \varphi_e = 0$		
7.5	0.5	-0.74	4.02	12.15	0.00	0.00
7.5	1.5	-0.74	1.93	12.15	0.00	0.00
10.0	0.5	-0.74	3.75	12.15	0.00	0.00
10.0	1.5	-0.74	1.78	12.15	0.00	0.00

Bansal and Yaron (2004): Empirical Results

	Dat	a	Model		
Variable	Estimate	SE	$\gamma = 7.5$	$\gamma = 10$	
		Returns			
$E(r_m - r_f)$	6.33	(2.15)	4.01	6.84	
$E(r_f)$	0.86	(0.42)	1.44	0.93	
$\sigma(r_m)$	19.42	(3.07)	17.81	18.65	
$\sigma(r_f)$	0.97	(0.28)	0.44	0.57	
	P	rice Dividend			
$E(\exp(p-d))$	26.56	(2.53)	25.02	19.98	
$\sigma(p-d)$	0.29	(0.04)	0.18	0.21	