Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility

- Motivation
- Epstein-Zin Preferences
- Optimal Consumption with EZ-Utility
- Asset Pricing in a Lucas-Tree Economy
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing

Issues with Time-Additive Utility

Timing of uncertainty resolution

- An agent with additive utility is indifferent between early or late resolution of uncertainty.
- Consider two consumption streams
(1) In each period $t=0,1, \ldots, T$, consumption is i.i.d. with

$$
\mathbb{P}\left(C_{t}=\bar{C}\right)=\mathbb{P}\left(C_{t}=\underline{C}\right)=0.5
$$

where $\bar{C}>\underline{C}$.
(2) In each period $t=1,2, \ldots, T, C_{t}^{\prime}=C_{0}$ where

$$
\mathbb{P}\left(C_{0}^{\prime}=\bar{C}\right)=\mathbb{P}\left(C_{0}^{\prime}=\underline{C}\right)=0.5
$$

- With additive utility, both streams generate the same indirect utility (check!).
- If you prefer one of them, you cannot have time-additive utility!

Issues with Time-Additive Utility

Intertemporal Substitution vs. Risk Aversion

- Agents typically dislike fluctuations in their consumption streams over time
- Suppose $C=\frac{1}{2}(\bar{C}+\underline{C})$. Consider three consumption streams
(1) Consumption is constant $C_{t}=C$ for all $t=0,1, \ldots, T$
(2) Consumption varies over time $C_{t}^{\prime}=\bar{C}$ if $t=0 \bmod 2$ and $C_{t}^{\prime}=\underline{C}$ if $t=1 \bmod 2$
(3) Consumption varies across states In each period $t=1,2, \ldots, T$, consumption is i.i.d.

$$
\mathbb{P}\left(C_{t}=\bar{C}\right)=\mathbb{P}\left(C_{t}=\underline{C}\right)=0.5
$$

- Agents (typically) prefer C over C^{\prime} due to their aversion against intertemporal variation.
- Agents (typically) prefer C over $C^{\prime \prime}$ due to their aversion against variation across states (risk).

Issues with Time-Additive Utility III

Intertemporal Substitution vs. Risk Aversion

- For time additive utility, both is determined by the concavity of the utility function, e.g., CRRA-utility: $u(C)=\frac{1}{1-\gamma} C^{1-\gamma}$.
- Relative risk aversion is given by

$$
R R A=-\frac{C u^{\prime \prime}(C)}{u^{\prime}(C)}=\gamma
$$

- Elasticity of intertemporal substitution measures the responsiveness of the growth rate of consumption to the real interest rate (Hall 1988).

$$
E I S=\frac{\mathrm{d} \Delta c_{t+1}}{\mathrm{~d} r_{t}^{f}}=\cdots=\frac{1}{\gamma}
$$

- Substitution Effect: If r^{f} goes up, the agent might reduce consumption and saves more to increase future consumption.
- Wealth Effect: If r^{f} goes up, the agent might feel wealthier and consumes more.
- Both properties are inseparably tied together.

Elasiticity of Intertemporal Substitution

Elasiticity of Intertemporal Substitution

Elasiticity of Intertemporal Substitution

Possible Solution

Recursive Utility

- Recursive Utility is one possible way of addressing some of the previous issues.
- A recursive utility index \mathcal{U} can be expressed as

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=W_{t}\left(C_{t}, \mathcal{U}_{t+1}\left(C_{t+1}, C_{t+2}, \ldots\right)\right)
$$

where W is an intertemporal aggregator.

- W describes the aggregation of present consumption and future utility.
- The aggregator takes utility from current consumption C_{t} and expected utility from future consumption \mathcal{U}_{t+1} into account.

Example: Time-Additive Utility

- Choose the linear aggregator

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=u\left(C_{t}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[\mathcal{U}_{t+1}\left(C_{t+1}, C_{t+2}, \ldots\right)\right]
$$

- Then, time- t utility is given by

$$
\begin{aligned}
\mathcal{U}_{t} & =u\left(C_{t}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[u\left(C_{t+1}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[\mathcal{U}_{t+2}\right]\right] \\
& =u\left(C_{t}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[u\left(C_{t+1}\right)\right]+\mathrm{e}^{-2 \delta} \mathbb{E}_{t}\left[u\left(C_{t+2}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[\mathcal{U}_{t+3}\right]\right] \\
& =u\left(C_{t}\right)+\mathrm{e}^{-\delta} \mathbb{E}_{t}\left[u\left(C_{t+1}\right)\right]+\mathrm{e}^{-2 \delta} \mathbb{E}_{t}\left[u\left(C_{t+2}\right)\right]+\mathrm{e}^{-3 \delta} \mathbb{E}_{t}\left[\mathcal{U}_{t+3}\right] \\
& =\ldots \\
& =\sum_{k=0}^{T} \mathrm{e}^{-\delta k} \mathbb{E}_{t}\left[u\left(c_{t+k}\right)\right]
\end{aligned}
$$

- Standard time-additive utility is a special case of recursive utility for a linear aggregator.

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility

- Motivation
- Epstein-Zin Preferences
- Optimal Consumption with EZ-Utility
- Asset Pricing in a Lucas-Tree Economy
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing

Epstein-Zin Utility

- Consider the following CES aggregator

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=\left[\alpha C_{t}^{1-\phi}+\beta \mathrm{CE}_{t}\left(\mathcal{U}_{t+1}\right)^{1-\phi}\right]^{\frac{1}{1-\phi}}
$$

where $\phi>0$ and

$$
\mathrm{CE}_{t}\left(\mathcal{U}_{t+1}\right)=G^{-1}\left(\mathbb{E}_{t}\left[G\left(\mathcal{U}_{t+1}\right)\right]\right)
$$

for increasing and concave functions G.

- The more concave G is, and the more uncertain the consumption stream is, the lower is the certainty equivalent.
- Most of the literature assumes $G(x)=\frac{1}{1-\gamma} x^{1-\gamma}$, where γ measures risk aversion.
- It is not necessary to assume that the weights α, β add up to one. Important choice: $\beta=\mathrm{e}^{-\delta}, \alpha=1-\beta$.

Epstein-Zin Utility: Certainty Equivalent

Epstein-Zin Utility: Certainty Equivalent

Epstein-Zin Utility: Deterministic Case

- If the consumption stream is deterministic, $\mathrm{CE}\left(\mathcal{U}_{t+1}\right)=\mathcal{U}_{t+1}$.

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=\left[(1-\beta) C_{t}^{1-\phi}+\beta \mathcal{U}_{t+1}^{1-\phi}\right]^{\frac{1}{1-\phi}}
$$

- Iterating implies

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=\left[(1-\beta) \sum_{k=0}^{T} \beta^{k} C_{t+1}^{1-\phi}\right]^{\frac{1}{1-\phi}}
$$

- For deterministic consumption stream, maximizing \mathcal{U}_{t} is thus equivalent to maximize CRRA-utility

$$
\sum_{t=0}^{T} \beta^{t} C_{t}^{1-\phi}
$$

- $\psi=\frac{1}{\phi}$ is the elasticity of intertemporal substitution.

Epstein-Zin Utility: Special Case $\gamma=\phi$

- In general, we obtain

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=\left[(1-\beta) C_{t}^{1-\phi}+\beta \mathbb{E}\left[\mathcal{U}_{t+1}^{1-\gamma}\right]^{\frac{1-\phi}{1-\gamma}}\right]^{\frac{1}{1-\phi}}
$$

- If $\gamma=\phi$

$$
\mathcal{U}_{t}\left(C_{t}, C_{t+1}, \ldots\right)=\left[(1-\beta) C_{t}^{1-\phi}+\beta \mathbb{E}\left[\mathcal{U}_{t+1}^{1-\phi}\right]\right]^{\frac{1}{1-\phi}}
$$

- Maximizing \mathcal{U}_{t} is thus equivalent to maximize CRRA-utility

$$
\sum_{t=0}^{T} \beta^{t} \mathbb{E}\left[C_{t}^{1-\phi}\right]
$$

- Risk aversion γ and EIS are thus related via EIS $=\psi=1 / \gamma$.

Epstein-Zin Utility: Resolution of Uncertainty

- Consider again the following consumption streams
(1) In each period $t=0,1, \ldots$, consumption is i.i.d. with

$$
\mathbb{P}\left(C_{t}=\bar{C}\right)=\mathbb{P}\left(C_{t}=\underline{C}\right)=0.5
$$

where $\bar{C}>\underline{C}$.
(2) In each period $t=1,2, \ldots, C_{t}^{\prime}=C_{0}$ where

$$
\mathbb{P}\left(C_{0}^{\prime}=\bar{C}\right)=\mathbb{P}\left(C_{0}^{\prime}=\underline{C}\right)=0.5
$$

- Consider the utility of consumption stream 2.
- There are only two possible states. In either state $i \in\{g, b\}$, the consumption stream is constant and $\mathcal{U}_{i, t}=\mathcal{U}_{i, t+1}$.

$$
\begin{aligned}
\mathcal{U}_{i}^{1-\phi} & =(1-\beta) C_{i}^{1-\phi}+\beta\left(\mathcal{U}_{i}^{1-\gamma}\right)^{\frac{1-\phi}{1-\gamma}} \\
& =(1-\beta) C_{i}^{1-\phi}+\beta \mathcal{U}_{i}^{1-\phi} \Longleftrightarrow \mathcal{U}_{i}=C_{i}
\end{aligned}
$$

Epstein-Zin Utility: Resolution of Uncertainty

- Therefore, utility of consumption stream $\mathbf{2}$ is

$$
\mathcal{U}_{i}^{1-\phi}=(1-\beta) C_{i}^{1-\phi}+\beta\left(\frac{1}{2} \bar{C}^{1-\gamma}+\frac{1}{2} \underline{C}^{1-\gamma}\right)^{\frac{1-\phi}{1-\gamma}}
$$

- Utility of consumption stream $\mathbf{1}$ is

$$
\mathcal{U}_{i}^{1-\phi}=(1-\beta) C_{i}^{1-\phi}+\beta\left(\frac{1}{2} \overline{\mathcal{U}}^{1-\gamma}+\frac{1}{2} \underline{\mathcal{U}}^{1-\gamma}\right)^{\frac{1-\phi}{1-\gamma}}
$$

- Consider the case $\phi>\gamma>1$. Compare the two certainty equivalents (Jensen's inequality):

$$
\left(\frac{1}{2} \overline{\mathcal{U}}^{1-\gamma}+\frac{1}{2} \underline{\mathcal{U}}^{1-\gamma}\right)^{\frac{1-\phi}{1-\gamma}} \geq \frac{1}{2} \overline{\mathcal{U}}^{1-\phi}+\frac{1}{2} \underline{\mathcal{U}}^{1-\phi}
$$

Epstein-Zin Utility: Resolution of Uncertainty

- Consequently,

$$
\begin{aligned}
& \underline{\mathcal{U}}^{1-\phi} \geq(1-\beta) \underline{C}^{1-\phi}+\beta\left(\frac{1}{2} \overline{\mathcal{U}}^{1-\phi}+\frac{1}{2} \underline{\mathcal{U}}^{1-\phi}\right) \\
& \overline{\mathcal{U}}^{1-\phi} \geq(1-\beta) \bar{C}^{1-\phi}+\beta\left(\frac{1}{2} \overline{\mathcal{U}}^{1-\phi}+\frac{1}{2} \underline{\mathcal{U}}^{1-\phi}\right)
\end{aligned}
$$

- Summing up and rearranging terms yield

$$
\frac{1}{2} \overline{\mathcal{U}}^{1-\phi}+\frac{1}{2} \underline{\mathcal{U}}^{1-\phi} \geq \frac{1}{2} \bar{C}^{1-\phi}+\frac{1}{2} \underline{C}^{1-\phi}
$$

- or equivalently $\mathrm{CE}_{1} \geq \mathrm{CE}_{2}$.
- Therefore, if EIS $<1 / \gamma$, the agent prefers the first consumption stream and thus prefers late resolution of uncertainty.
- The opposite is true for EIS $>1 / \gamma$. For CRRA-utility (EIS $=1 / \gamma$), the agent is indifferent between early and late resolution of uncertainty.

Epstein-Zin Utility: Summary

- Time-additive utility is too restrictive to distinguish between EIS and risk aversion or to model preferences for the resolution of uncertrainty.
- Certainty equivalent takes attitudes towards risk into account:
$\mathrm{CE}\left(\mathcal{U}_{t+1}\right)=G^{-1}\left(\mathbb{E}_{t}\left[G\left(\mathcal{U}_{t+1}\right)\right]\right)$, where $G(x)=\frac{1}{1-\gamma} x^{1-\gamma}$ where γ is risk-aversion.
- Aggregator: CES-function with elasticity of substitution ψ.
- Utility Index:

$$
\mathcal{U}_{t}=\left[\alpha C_{t}^{1-1 / \psi}+\beta\left(\mathbb{E}_{t}\left[\mathcal{U}_{t+1}^{1-\gamma}\right]\right)^{\frac{1-1 / \psi}{1-\gamma}}\right]^{\frac{1}{1-1 / \psi}}
$$

- Typically, $\alpha=(1-\beta)$ and $\beta=\mathrm{e}^{-\delta}$.
- CRRA is special case if $\gamma=\frac{1}{\psi}$.
- For deterministic consumption streams, γ does not matter.

Epstein-Zin Utility: Summary

- $\theta=\frac{1-\gamma}{1-1 / \psi}$ indicates preferences for resolution of uncertainty. If $\theta<1$ $(\theta>1)$
- the agent has preferences for early (late) resolution of uncertainty.
- The agent cares more (less) about uncertainty across states than about smoothing over time.
- CRRA, i.e., $\theta=1$ implies that the agent is indifferent between early and late resolution of uncertainty.
- Risk aversion γ determines the optimal investment strategy.
- hedging motive dominates speculation motive
- investor takes a short position in good state variables
- EIS $\psi=1 / \phi$ determines the optimal consumption and saving behavior.
- If $\psi>1$
- variation over time: substitution effect dominates wealth effect
- when investment opportunities improve, the investor saves more and consumes less

Evidence on RRA and EIS

- It is a common consensus that risk aversion is greater than 1.
- Evidence on EIS is mixed:
- Bansal and Yaron (2004) and Vissing-Joergensen and Attanasio (2003) combine equity and consumption data and estimate an EIS of 1.5 and a risk aversion in the range between 8 and 10 .
- Hall (1988), Campbell (1999), Vissing-Joergenen (2002) estimate an EIS well below one.
- Due to the lack of evidence and for reasons of tractability, many authors use unit EIS.

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility

- Motivation
- Epstein-Zin Preferences
- Optimal Consumption with EZ-Utility
- Asset Pricing in a Lucas-Tree Economy
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing

Optimization Problem

- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with filtration $\mathcal{F}=\left(\mathcal{F}_{t}\right)_{t=0, \ldots, T}$ modeling information.
- Agent chooses consumption and investment at $t=0, \ldots, T$ to maximize the utility index \mathcal{U}.
- Portfolio holdings $\pi^{i}=\frac{\varphi^{i} S^{i}}{X}$ add up to one

$$
\sum_{i=0}^{n} \pi^{i}=1
$$

- Investor's wealth $X=X^{\varphi, C}$ evolves

$$
X_{t+1}=\left(X_{t}-C_{t}\right) R_{t+1}^{\pi}
$$

- where the portfolio return is given by

$$
R_{t+1}^{\pi}=\sum_{i=0}^{n} \pi_{t+1}^{i} R_{t+1}^{i}=R_{t+1}^{0}+\sum_{i=1}^{n} \pi_{t+1}^{i}\left(R_{t+1}^{i}-R_{t+1}^{0}\right)
$$

Optimization Problem

- The optimization problem is given by

$$
J_{t}=\max _{c, \pi}\left[\alpha C_{t}^{1-1 / \psi}+\beta\left(\mathbb{E}_{t}\left[J_{t+1}^{1-\gamma}\right]\right)^{\frac{1-1 / \psi}{1-\gamma}}\right]^{\frac{1}{1-1 / \psi}}
$$

- Conjecture: The indirect utility function is given by $J_{t}=h_{t} X_{t}$.
- h_{t} captures dependence on time and state variables.
- The indirect utility function is thus

$$
\begin{aligned}
h_{t} X_{t} & =\left[\alpha C_{t}^{1-1 / \psi}+\beta\left(\mathbb{E}_{t}\left[h_{t+1}^{1-\gamma} X_{t+1}^{1-\gamma}\right]\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1-1 / \psi}} \\
& =\left[\alpha C_{t}^{1-1 / \psi}+\beta\left(X_{t}-C_{t}\right)^{1-1 / \psi}\left(\mathbb{E}_{t}\left[\left(h_{t+1} R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1-1 / \psi}} \\
& =C_{t}\left[\alpha+\beta\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1-1 / \psi}\left(\mathbb{E}_{t}\left[\left(h_{t+1} R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1-1 / \psi}}
\end{aligned}
$$

First Order Condition w.r.t. Consumption

- 1.) The FOC is given by

$$
\alpha C_{t}^{-1 / \psi}-\beta\left(X_{t}-C_{t}\right)^{-1 / \psi}\left(\mathbb{E}_{t}\left[h_{t+1}^{1-\gamma}\left(R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{1 / \theta}=0
$$

- and can be expressed as

$$
\alpha\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1 / \psi}=\beta\left(\mathbb{E}_{t}\left[\left(h_{t+1} R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}}
$$

- Remember the indirect utility function

$$
h_{t} X_{t}=C_{t}\left[\alpha+\beta\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1-1 / \psi}\left(\mathbb{E}_{t}\left[\left(h_{t+1} R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1-1 / \psi}}
$$

Indirect Utility Function

- 2.) Substitute the FOC into J_{t}

$$
\begin{aligned}
h_{t} X_{t} & =C_{t}\left[\alpha+\alpha\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1-1 / \psi}\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1 / \psi}\right]^{\frac{1}{1-1 / \psi}} \\
& =C_{t}\left[\alpha+\alpha\left(\frac{X_{t}-C_{t}}{C_{t}}\right)\right]^{\frac{1}{1-1 / \psi}} \\
& =C_{t}\left[\alpha\left(\frac{X_{t}}{C_{t}}\right)\right]^{\frac{1}{1-1 / \psi}}
\end{aligned}
$$

- Or equivalently

$$
\begin{aligned}
h_{t} & =\frac{C_{t}}{X_{t}}\left[\alpha\left(\frac{X_{t}}{C_{t}}\right)\right]^{\frac{1}{1-1 / \psi}} \\
& =\alpha^{\frac{1}{1-1 / \psi}}\left(\frac{C_{t}}{X_{t}}\right)^{1-\frac{1}{1-1 / \psi}}
\end{aligned}
$$

Indirect Utility Function

- 3.) Express J_{t} in terms of the consumption-wealth ratio. Consequently, the indirect utility function is given by

$$
J_{t}=h_{t} X_{t}=\alpha^{\frac{1}{1-1 / \psi}}\left(\frac{C_{t}}{X_{t}}\right)^{\frac{1}{1-\psi}} X_{t}
$$

- h_{t} determines how much of the current wealth is used for consumption.
- For $\psi>1$, the indirect utility function is increasing in the wealth-consumption ratio
- assume that investment opportunities have improved
- $\psi>1$ implies: consumption today decreases, consumption tomorrow increases
- thus: wealth-consumption ratio today increases
- consequently: higher wealth-consumption ratio signals better investment opportunities and thus higher indirect utility
- The opposite is true for $\psi<1$.

First-Order Condition for Consumption

- 4.) Substitute h_{t+1} into the FOC for C_{t} and simplify. Target:

Derive something that looks like an Euler condition.

$$
\begin{aligned}
\alpha\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1 / \psi} & =\beta\left(\mathbb{E}_{t}\left[\left(h_{t+1} R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}} \\
& =\beta\left(\mathbb{E}_{t}\left[\alpha^{\theta}\left(\frac{C_{t+1}}{X_{t+1}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}}
\end{aligned}
$$

- Remember the budget constraint

$$
X_{t+1}=\left(X_{t}-C_{t}\right) R_{t+1}^{\pi}
$$

- Therefore,

$$
\begin{aligned}
\alpha\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1 / \psi} & =\beta\left(\mathbb{E}_{t}\left[\alpha^{\theta}\left(\frac{C_{t+1}}{\left(X_{t}-C_{t}\right) R_{t+1}^{\pi}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{1-\gamma}\right]\right)^{\frac{1}{\theta}} \\
& =\beta\left(\mathbb{E}_{t}\left[\alpha^{\theta}\left(\frac{C_{t+1}}{X_{t}-C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]\right)^{\frac{1}{\theta}}
\end{aligned}
$$

First-Order Condition for Consumption

- Dividing by α

$$
\begin{aligned}
\left(\frac{X_{t}-C_{t}}{C_{t}}\right)^{1 / \psi} & =\beta\left(\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{X_{t}-C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]\right)^{\frac{1}{\theta}} \\
& =\beta\left(\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(\frac{C_{t}}{X_{t}-C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]\right)^{\frac{1}{\theta}} \\
& =\beta\left(\frac{C_{t}}{X_{t}-C_{t}}\right)^{-1 / \psi}\left(\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]\right)^{\frac{1}{\theta}}
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
& 1=\beta\left(\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]\right)^{\frac{1}{\theta}} \\
& 1=\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right]
\end{aligned}
$$

First-Order Condition for Investment I

- Remember the portfolio return

$$
R_{t+1}^{\pi}=R_{t+1}^{0}+\sum_{i=1}^{n} \pi_{t+1}^{i}\left(R_{t+1}^{i}-R_{t+1}^{0}\right)
$$

- 5.) The FOC w.r.t. $\pi^{i}, i=1, \ldots, n$ is given by

$$
\mathbb{E}_{t}\left[h_{t+1}^{1-\gamma}\left(R_{t+1}^{\pi}\right)^{-\gamma}\left(R_{t+1}^{i}-R_{t+1}^{0}\right)\right]=0
$$

- substituting the expression for h_{t+1} and the budget constraint and some algebra yields

$$
\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1}\left(R_{t+1}^{i}-R_{t+1}^{0}\right)\right]=0
$$

First-Order Condition for Investment II

- Multiplying by the portfolio weight π_{t}^{i} and summing up over $i=0, \ldots, n$

$$
\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1}\left(R_{t+1}^{\pi}-R_{t+1}^{0}\right)\right]=0
$$

- Therefore,

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1} R_{t+1}^{0}\right] & =\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta}\right] \\
& =\beta^{-\theta}
\end{aligned}
$$

- where the second $=$ comes from optimal consumption. Hence, the Euler condition for asset 0 is:

$$
1=\mathbb{E}_{t}\left[\beta^{\theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1} R_{t+1}^{0}\right]
$$

Pricing Kernel

- Let $\beta=\mathrm{e}^{-\delta}$ and repeat the same steps for the other assets:

$$
1=\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1} R_{t+1}^{i}\right]
$$

for all assets $i=0, \ldots, n$.

- Hence we have proven:

Pricing Kernel for EZ-Preferences

The pricing kernel for EZ-Preferences is given by

$$
M_{t, t+1}=\mathrm{e}^{-\delta \theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{-\gamma+1-\theta}\left(R_{t+1}^{\pi}\right)^{\theta-1}
$$

where (C, π) denotes the agent's optimal consumption and portfolio strategy.

Log Pricing Kernel

- The log pricing kernel is thus

$$
\begin{aligned}
m_{t, t+1} & =\log M_{t, t+1} \\
& =-\delta \theta-\frac{\theta}{\psi} \Delta c_{t+1}+(\theta-1) r_{t+1}^{\pi}
\end{aligned}
$$

- where Δc_{t+1} is log consumption growth and $r_{t+1}^{\pi}=\Delta x_{t+1}$ is the log return on optimal wealth
- Consumption claim / Optimal wealth is an asset paying consumption as dividends

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility

- Motivation
- Epstein-Zin Preferences
- Optimal Consumption with EZ-Utility
- Asset Pricing in a Lucas-Tree Economy
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing

Model Setup

- So far, consumption and investment have been determined endogenously.
- Now, we consider a representative agent with recursive preferences and optimal consumption growth Δc which is exogenous.
- Simplest case
- No state variables
- Consumption growth is i.i.d. and follows a normal distribution

$$
\Delta c_{t+1}=\mu_{c}+\eta_{t+1}, \quad \eta_{t+1} \sim \mathcal{N}\left(0, \sigma_{c}^{2}\right)
$$

- Wealth growth is i.i.d. and follows a normal distribution

$$
\Delta x_{t+1}=\mu_{x}+\xi_{t+1}, \quad \xi_{t+1} \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)
$$

Pricing the Consumption Claim

- Wealth is the price of the consumption claim. Pricing equation

$$
\begin{aligned}
X_{t} & =\mathbb{E}_{t}\left[M_{t, t+1} X_{t+1}\right] \\
1 & =\mathbb{E}_{t}\left[\mathrm{e}^{m_{t, t+1}+\Delta x_{t+1}}\right] \\
& =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \Delta c_{t+1}+(\theta-1) \Delta x_{t+1}+\Delta x_{t+1}}\right] \\
& =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \Delta c_{t+1}+\theta \Delta x_{t+1}}\right] \\
& =\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \mu_{c}+\theta \mu_{x}+0.5 \frac{\theta^{2}}{\psi^{2}} \sigma_{c}^{2}+0.5 \theta^{2} \sigma_{x}^{2}-\frac{\theta^{2}}{\psi} \sigma_{c, x}}
\end{aligned}
$$

- Consequently, the following condition must hold

$$
\mu_{x}=\delta+\frac{1}{\psi} \mu_{c}-\frac{1}{2} \frac{\theta}{\psi^{2}} \sigma_{c}^{2}-\frac{1}{2} \theta \sigma_{x}^{2}+\frac{\theta}{\psi} \sigma_{c, x} .
$$

Risk-Free Rate

- The risk-free asset satisfies the following pricing equation

$$
\begin{aligned}
1 & =\mathbb{E}_{t}\left[\mathrm{e}^{m_{t, t+1}+r_{t}^{f}}\right] \\
& =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \Delta c_{t+1}+(\theta-1) \Delta x_{t+1}+r_{t}^{f}}\right] \\
& =\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \mu_{c}+(\theta-1) \mu_{x}+0.5 \frac{\theta^{2}}{\psi^{2}} \sigma_{c}^{2}+0.5(\theta-1)^{2} \sigma_{x}^{2}-\frac{\theta(\theta-1)}{\psi} \sigma_{c, x}+r_{t}^{f}}
\end{aligned}
$$

- Therefore

$$
r_{t}^{f}=\delta \theta+\frac{\theta}{\psi} \mu_{c}-(\theta-1) \mu_{x}-\frac{1}{2} \frac{\theta^{2}}{\psi^{2}} \sigma_{c}^{2}-\frac{1}{2}(\theta-1)^{2} \sigma_{x}^{2}+\frac{\theta(\theta-1)}{\psi} \sigma_{c, x}
$$

- Substituting μ_{x} implies (standard as in CRRA, new due to EZ)

$$
r_{t}^{f}=\delta+\frac{1}{\psi} \mu_{c}-\frac{1}{2} \frac{\theta}{\psi^{2}} \sigma_{c}^{2}-\frac{1}{2}(1-\theta) \sigma_{x}^{2}
$$

Pricing of an Arbitrary Asset

- Consider an asset with return $r_{t+1}^{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$.
- The pricing equation is

$$
\begin{aligned}
1 & =\mathbb{E}_{t}\left[\mathrm{e}^{m_{t, t+1}+r_{t}^{i}}\right] \\
& =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta \theta-\frac{\theta}{\psi} \Delta c_{t+1}+(\theta-1) \Delta x_{t+1}+r_{t}^{i}}\right]
\end{aligned}
$$

- Therefore, its expected return is

$$
\begin{aligned}
\mu_{i}=\delta \theta & +\frac{\theta}{\psi} \mu_{c}-(\theta-1) \mu_{x}-\frac{1}{2} \frac{\theta^{2}}{\psi^{2}} \sigma_{c}^{2}-\frac{1}{2}(\theta-1)^{2} \sigma_{x}^{2}-0.5 \sigma_{i}^{2} \\
& +\frac{\theta(\theta-1)}{\psi} \sigma_{c, x}+\frac{\theta}{\psi} \sigma_{i, c}-(\theta-1) \sigma_{i, x}
\end{aligned}
$$

- Substituting μ_{x} implies (standard as in CRRA, new due to EZ)

$$
\mathrm{rp}_{t}^{i}=\mu_{i}+0.5 \sigma_{i}^{2}-r_{t}^{f}=\frac{\theta}{\psi} \sigma_{i, c}+(1-\theta) \sigma_{i, x}
$$

Applications of Recursive Utility

- So far we have shown how recursive utility allows to break the link between risk aversion and EIS.
- These preferences are very useful in asset pricing, portfolio choice, and are also prevalent in macroeconomics.
- They can also be used to address the other puzzles mentioned in the literature (Epstein and Zin (1989), Gilboa and Schmeidler (1989,1993), Ghirardato et al. (2004), Andries (2013))
- However
- EZ preferences do not resolve the equity premium puzzle (Weil, 1989)
- We need something more: long-run risk

