Agenda

- 1 Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- Habit Formation and Asset Pricing
 Motivation
 - Campbell/Cochrane Model
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- Disaster Risk and Asset Pricing

Summary of Benchmark Models

- The standard Lucas tree model with CRRA utility is not able to match the relevant asset pricing moments.
- More realistic preference structure involving the agent's habit level of consumption.
- Investor does not look at consumption only, but compares it to some benchmark.
- Variation in the habit level over time
 - can be used to model business cycles.
 - leads to state dependent risk aversion.
 - can lead to time-dependent variations, e.g., counter-cyclical Sharpe ratios.

82 / 220

• Popular choices with instantaneous utility function

$$u(C,H)=\frac{(C-H)^{1-\gamma}}{1-\gamma}, \qquad u(C,H)=\frac{(C/H)^{1-\gamma}}{1-\gamma}.$$

- *H* denotes the habit level.
- Investor compares own consumption to some benchmark which can
 - either depend on own past consumption (internal habit)
 - or be some exogenous process (external habit)
- An admissible consumption strategy satisfies $C_t > H_t$ for all $t = 1, \dots, T$.

• Degree of relative risk aversion for additive habit

$$RRA(C,H) = -C\frac{u_{cc}(C,H)}{u_{c}(C,H)} = \gamma \frac{C}{C-H}.$$

Risk aversion is higher in bad times, i.e., if C – H is small.
Utility index

$$\mathcal{U} = \sum_{k=0}^{T} u(C_t, H_t) \mathrm{e}^{-\delta t}$$

84 / 220

Internal Habit

- Agent compares consumption today to average consumption in the past, e.g., Abel (1999)
- Habit level is moving average of past consumption

$$H_t = H_0 \mathrm{e}^{-\beta t} + \alpha \sum_{s=1}^{t-1} \mathrm{e}^{-\beta(t-s)} C_s$$

• Habit level dynamics

$$H_t = \mathrm{e}^{-\beta} H_{t-1} + \alpha \mathrm{e}^{-\beta} C_{t-1}$$

• External Habit is determined by consumption of other investors, e.g., Campbell and Cochrane (1999), Abel (1990).

Agenda

- 1 Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- Habit Formation and Asset Pricing
 Motivation
 - Campbell/Cochrane Model
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- Disaster Risk and Asset Pricing

Summary of Benchmark Models

Campbell and Cochrane (1999) – Model Setup

Endowment economy with aggregate consumption dynamics

$$\Delta c_{t+1} = \mu_c + \nu_{t+1}$$

where the innovations $\nu_{t+1} \sim_{i.i.d.} \mathcal{N}(0, \sigma_c^2)$

• Agent has **external** habit formation with habit level *H_t* and utility function

$$u(C,H)=\frac{(C-H)^{1-\gamma}}{1-\gamma}$$

Surplus consumption ratio

$$S_t = \frac{C_t - H_t}{C_t}$$

Campbell and Cochrane (1999) – Stochastic Discount Factor

• Marginal utility is given by

$$u_c(C,H)=(C-H)^{-\gamma}=C^{-\gamma}S^{-\gamma}.$$

• The SDF is thus given by

$$M_{t,t+1} = e^{-\delta} \frac{u_c(C_{t+1}, H_{t+1})}{u_c(C_t, H_t)} = e^{-\delta} \left(\frac{S_{t+1}}{S_t} \frac{C_{t+1}}{C_t}\right)^{-\gamma}$$

and the log SDF

$$m_{t,t+1} = -\delta - \gamma \log \frac{C_{t+1}}{C_t} - \gamma \log \frac{S_{t+1}}{S_t}$$
$$= -\delta - \gamma (\mu_c + \nu_{t+1}) - \gamma \Delta s_{t+1}$$

Campbell and Cochrane (1999) – Risk-free Rate

- To gain intuition, assume for the moment that $\Delta s_{t+1} = \mu_s + \xi_{t+1}$, where $\xi_{t+1} \sim_{i.i.d.} \mathcal{N}(0, \sigma_s^2)$.
- Then, the log SDF is given by

$$m_{t,t+1} = -\delta - \gamma(\mu_c + \nu_{t+1}) - \gamma(\mu_s + \xi_{t+1}).$$

and the pricing kernel is log-normally distributed.

• The risk-free rate is thus

$$\begin{aligned} r_t^f &= -\log(\mathbb{E}_t[M_{t,t+1}]) \\ &= -\mathbb{E}_t[m_{t,t+1}] - \frac{1}{2} \operatorname{var}_t[m_{t,t+1}] \\ &= \delta + \gamma \mu_c + \gamma \mu_s - \frac{1}{2} \gamma^2 \sigma_c^2 - \frac{1}{2} \gamma^2 \sigma_s^2 - \gamma^2 \operatorname{cov}_t(\nu_{t+1}, \xi_{t+1}) \end{aligned}$$

$$r_t^f = \delta + \gamma \mu_c - \frac{1}{2} \gamma^2 \sigma_c^2 + \gamma \mu_s - \frac{1}{2} \gamma^2 \sigma_s^2 - \gamma^2 \operatorname{cov}_t(\nu_{t+1}, \xi_{t+1})$$

• The blue terms are standard.

- δ represents the role of discounting.
- $\gamma \mu_c$ represents intertemporal consumption smoothing.
- $-\frac{1}{2}\gamma^2 \sigma_c^2$ represents precautionary savings (consumption risk).
- Compared to CRRA-utility the red terms are new.
 - $\gamma \mu_s$ intertemporal consumption smoothing.
 - $\gamma \sigma_s^2 + \gamma^2 \operatorname{cov}_t(\nu_{t+1}, \xi_{t+1})$ precautionary savings.

Campbell and Cochrane (1999) – Equity Premium

• Risk premium for an asset with return r_{t+1} :

$$rp_{t} = \mathbb{E}_{t}[r_{t+1}] + \frac{1}{2} var_{t}(r_{t+1}) - r_{t}^{f}$$

= $-cov(r_{t+1}, m_{t+1})$
= $\gamma cov(r_{t+1}, c_{t+1}) + \gamma cov(r_{t+1}, s_{t+1})$

- The blue term is standard.
- Compared to CRRA-utility the red term reflects an additional risk-premium for the uncertainty in the habit level.
- The risk premium is higher than in the CRRA case since risk in *s* is priced.

Campbell and Cochrane (1999) – Surplus Consumption Dynamics

• Campbell and Cochrane (1999) specify:

$$\Delta s_{t+1} = \varphi(\overline{s} - s_t) + \lambda(s_t)\nu_{t+1}$$

- Mean reversion process with mean reversion speed φ and mean reversion level \overline{s} .
- Same risk factor as consumption growth.
- Open question is how to model the sensitivity function λ .
- Notice that this indirect way to model habit ensures that surplus consumption stays positive.

Campbell and Cochrane (1999) – Surplus Consumption Dynamics

• Now, the risk-free rate becomes

$$r_t^f = \delta + \gamma \mu_c - \frac{1}{2} \gamma^2 \sigma_c^2 - \gamma \varphi(s_t - \overline{s}) - \frac{1}{2} \gamma^2 (2\lambda(s_t) + \lambda(s_t)^2) \sigma_c^2$$

• ... and the equity premium

$$rp_{t} = \gamma cov(r_{t+1}, \Delta c_{t+1}) + \gamma cov(r_{t+1}, \Delta s_{t+1})$$
$$= \gamma cov(r_{t+1}, \Delta c_{t+1}) + \gamma \lambda(s_{t}) cov(r_{t+1}, \Delta c_{t+1})$$

• Blue terms are standard, red terms due to habit formation

Campbell and Cochrane (1999) – Specification of $\lambda(s)$

Campbell and Cochrane (1999) impose three conditions:

1 risk-free rate is constant at \overline{r} .

$$\overline{r} = \delta + \gamma \mu_c - \frac{1}{2} \gamma^2 \sigma_c^2 - \gamma \varphi(s_t - \overline{s}) - \frac{1}{2} \gamma^2 (2\lambda(s_t) + \lambda(s_t)^2) \sigma_c^2$$

2 habit is predetermined at the steady state \overline{s} .

$$\frac{\partial h}{\partial c}\Big|_{s=\overline{s}} = 1 - \frac{\lambda(\overline{s})}{\mathrm{e}^{-\overline{s}} - 1} = 0$$

(a) habit is predetermined *around* the steady state \overline{s} .

$$\frac{\partial^2 h}{\partial c \partial h}\Big|_{s=\overline{s}} = -\frac{\lambda'(\overline{s})(e^{-\overline{s}}-1) + \lambda(\overline{s})e^{-\overline{s}}}{(e^{-\overline{s}}-1)^2} = 0$$

Campbell and Cochrane (1999) – Specification of $\lambda(s)$

• These conditions impose a restriction between the steady-state surplus consumption ratio and the other parameters

$$e^{\overline{s}} = \sigma_c \sqrt{\frac{\gamma}{\varphi}}.$$

• They lead to a specification of the sensitivity function

$$\lambda(s_t) = \left(e^{-\overline{s}} \sqrt{1 - 2(s_t - \overline{s})} - 1 \right) \mathbf{1}_{\{s_t \le s_{\max}\}}.$$

Risk-free rate

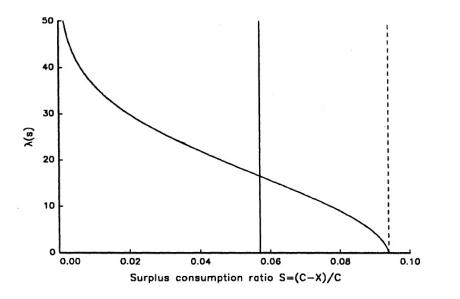
$$r_t^f = \delta + \gamma \mu_c - 0.5 \gamma \varphi$$

• Risk premium

$$\operatorname{rp}_{t} = \frac{\gamma}{\overline{S}} \sqrt{1 - 2(s_{t} - \overline{s})} \operatorname{cov}(r_{t+1}, \Delta c_{t+1})$$

Parameter	Variable	Value
Assumed:		
Mean consumption growth $(\%)^*$	g	1.89
Standard deviation of consumption growth (%)*	ŏ	1.50
Log risk-free rate (%)*	r^{f}	.94
Persistence coefficient*	φ	.87
Utility curvature	Ϋ́	2.00
Standard deviation of dividend growth (%)*	σ_w	11.2
Correlation between Δd and Δc	p	.2
Implied:		
Subjective discount factor*	δ	.89
Steady-state surplus consumption ratio	$\frac{\delta}{S}$.057
Maximum surplus consumption ratio	S_{\max}	.094

Campbell and Cochrane (1999) – Calibration

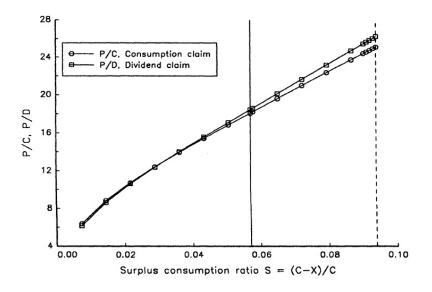


Christoph Hambel

Campbell and Cochrane (1999) – Asset Pricing Moments

Statistic	Consumption Claim	Dividend Claim	Postwar Sample	Long Sample
$E(\Delta c)$	1.89*		1.89	1.72
$\sigma(\Delta c)$	1.22*		1.22	3.32
$E(r^{f})$.094*		.094	2.92
$E(r-r^f)/\sigma(r-r^f)$.43*	.33	.43	.22
$E(R - R^{f}) / \sigma(R - R^{f})$.50		.50	
$E(r-r^{f})$	6.64	6.52	6.69	3.90
$\sigma(r-r')$	15.2	20.0	15.7	18.0
$\exp[E(p-d)]$	18.3	18.7	24.7	21.1
$\sigma(p-d)$.27	.29	.26	.27

Campbell and Cochrane (1999) – Price Dividend Ratio



Campbell and Cochrane (1999) – Counter-cyclical Sharpe Ratios



Christoph Hambel

Campbell and Cochrane (1999) – State-dependent Risk Aversion

Campbell and Cochrane (1999) – Alternative Interpretation