Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing

- Introduction
- Time-Additive Utility
- Consumption-based CAPM (CCAPM)
- Example: Log-Normal Case
- Asset Pricing Puzzles
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing

Why General Equilibrium?

- So far, we have taken asset returns as given and derived prices of derivative claims.
- A general equilibrium model seeks to explain the asset pricing dynamics.
- Empirical findings (e.g., Bansal and Yaron 2004)
- expected return on government bonds $\mathbb{E}\left[r_{f}\right]=0.86 \%$
- standard deviation of return on government bonds: $\sigma\left(r_{f}\right)=0.97 \%$
- equity risk premium: $\mathbb{E}\left[r_{m}-r_{f}\right]=6.33 \%$
- standard deviation of equity return: $\sigma\left(r_{m}\right)=19.42 \%$
- These and other facts must be explained and not just taken as given.

General Equilibrium

- An equilibrium consists of
- consumption and investment decision of each investor
- prices of all traded assets
such that
- each investor maximizes his utility
- markets clear (demand = supply)
- In equilibrium, asset returns materialize endogenously from supply and demand.

General Equilibrium: First Outline

(1) Assume that prices are given
(2) Solve portfolio planning problem for each investor result: optimal portfolio holdings and optimal consumption (partial equilibrium)
(3) Check market clearing condition

- aggregate demand for assets = aggregate supply
- aggregate consumption = aggregate endowment
(1) Choose asset prices such that markets clear.

Representative Investor

- Aggregate demand depends on
- individual demand of each investor
- which depends on initial endowment, preferences, beliefs, ...
- Aggregation might be rather involved (we will deal with heterogeneous investors and consumption sharing rules later)
- Easy solution and standard approach: representative investor
- one investor who represents the market
- equilibrium condition: representative investor has to consume aggregate endowment

Racall: CAPM

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing

- Introduction
- Time-Additive Utility
- Consumption-based CAPM (CCAPM)
- Example: Log-Normal Case
- Asset Pricing Puzzles
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing

Representative Agent

- Planning horizon T.
- Representative agent
- decides on consumption $C=\left(C_{t}\right)_{t=0, \ldots, T}$ and investment $\varphi=\left(\varphi_{t}\right)_{t=0, \ldots, T}$ at time $t=0, \ldots, T$.
- gains additive utility from the consumption stream; utility index

$$
\mathcal{U}=\sum_{t=0}^{T} \mathrm{e}^{-\delta t} \mathbb{E}\left[u\left(C_{t}\right)\right]
$$

- δ is the pure rate of time preferences.
- u is a utility function with $u^{\prime}(C)>0$ (agents are greedy) and $u^{\prime \prime}(C)<0$ (utility saturates).
- Popular Choice: Power Utility (CRRA) $u(C)=\frac{1}{1-\gamma} C^{1-\gamma}$

Popular Choice: CRRA-utility

Popular Choice: CRRA-utility

- Popular utility function

$$
u(C)=\frac{1}{1-\gamma} C^{1-\gamma}
$$

- The degree of relative risk aversion (Arrow 1970; Pratt 1966) is given by

$$
\begin{aligned}
\text { RRA } & =-C \frac{u^{\prime \prime}(C)}{u^{\prime}(C)} \\
& =-C \frac{-\gamma C^{-\gamma-1}}{C^{-\gamma}} \\
& =\gamma
\end{aligned}
$$

- For $\gamma=1$, the preferences collapse to \log-utility $u(C)=\log (C)$ which often leads to closed-form solutions.
- However, empirical evidence suggests $\gamma>1$.

Proof - Log-utility

More General: HARA-utility

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing

- Introduction
- Time-Additive Utility
- Consumption-based CAPM (CCAPM)
- Example: Log-Normal Case
- Asset Pricing Puzzles
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing

Consumption-based CAPM (CCAPM) - Model Setup

- To understand the mechanics, we consider a one-period model with one risk-free asset with price S_{t} and return r_{t}^{f}.
- The agents optimization problem is then
subject to

$$
\begin{aligned}
C_{t} & =E_{t}-\varphi S_{t} \\
C_{t+1} & =E_{t+1}+\varphi S_{t}\left(1+r_{t}^{f}\right)
\end{aligned}
$$

Consumption-based CAPM (CCAPM) - Euler Condition I

- To solve the decision problem, we consider its Lagrangian

$$
\begin{aligned}
& \mathcal{L}\left(C_{t}, C_{t+1}, \varphi, \lambda_{t}, \lambda_{t+1}\right)=u\left(C_{t}\right)+\mathbb{E}_{t}\left[\mathrm{e}^{-\delta} u\left(C_{t+1}\right)\right] \\
& \quad-\lambda_{t}\left[C_{t}-E_{t}+\varphi S_{t}\right]-\lambda_{t+1}\left[C_{t+1}-E_{t+1}-\varphi S_{t}\left(1+r_{t}^{f}\right)\right]
\end{aligned}
$$

- Taking first-order conditions

$$
\begin{aligned}
\mathcal{L}_{C_{t}} & =u_{c}\left(C_{t}\right)-\lambda_{t}=0 \\
\mathcal{L}_{C_{t+1}} & =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta} u_{c}\left(C_{t+1}\right)\right]-\lambda_{t+1}=0 \\
\mathcal{L}_{\varphi} & =-\lambda_{t}+\lambda_{t+1}\left(1+r_{t}^{f}\right)=0
\end{aligned}
$$

- Therefore,

$$
\lambda_{t}=u_{c}\left(C_{t}\right), \quad \lambda_{t+1}=\frac{u_{c}\left(C_{t}\right)}{1+r_{t}^{f}}
$$

Consumption-based CAPM (CCAPM) - Euler Condition II

- This implies

$$
\mathbb{E}_{t}\left[\mathrm{e}^{-\delta} u_{c}\left(C_{t+1}\right)\right]=\frac{u_{c}\left(C_{t}\right)}{1+r_{t}^{f}}
$$

- We end up with the pricing equation for the risk-free asset:

Euler Condition

$$
\mathbb{E}_{t}\left[\mathrm{e}^{-\delta} \frac{u_{c}\left(C_{t+1}\right)}{u_{c}\left(C_{t}\right)}\left(1+r_{t}^{f}\right)\right]=1
$$

- This can also be achieved in multi-period settings and with more than one asset but requires the Bellman-principle (exercise!).
- Therefore, the pricing kernel is given by

$$
M_{t, t+1}=\mathrm{e}^{-\delta} \frac{u_{c}\left(C_{t+1}\right)}{u_{c}\left(C_{t}\right)}
$$

where $M_{t, t+1}=M_{t+1} / M_{t}$.

Consumption-based CAPM (CCAPM) - Asset Pricing

- Risk-free rate

$$
\frac{1}{1+r_{t}^{f}}=\mathbb{E}_{t}\left[\mathrm{e}^{-\delta} \frac{u_{c}\left(C_{t+1}\right)}{u_{c}\left(C_{t}\right)}\right]
$$

- Risk premium

$$
\operatorname{rp}_{t}=\mathbb{E}_{t}\left[r_{t+1}\right]-r_{t}^{f}=-\left(1+r_{t}^{f}\right) \operatorname{cov}_{t}\left[M_{t, t+1}, r_{t+1}\right]
$$

- Typically, marginal utility is negatively correlated with asset returns.
- Investors demand a positive risk premium to hold this asset.
- Asset is positively correlated with consumption.
- The opposite is true if asset returns are positively correlated with MU.

Proof - Risk Premium

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing

- Introduction
- Time-Additive Utility
- Consumption-based CAPM (CCAPM)
- Example: Log-Normal Case
- Asset Pricing Puzzles
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing

Notational Convention

- We use capital letters for a process or variable, e.g., C_{t} stands for consumption, D_{t} for dividends,...
- We use small letters for the logarithm of this variable, e.g., $c_{t}=\ln C_{t}$.
- We use the operator Δ for the time increment, e.g.,

$$
\Delta C_{t+1}=C_{t+1}-C_{t}
$$

- Notice that for any process X, we have

$$
X_{t+1}=X_{t} \mathrm{e}^{\Delta x_{t+1}}
$$

Example: Log-Normal Case

- Investor with CRRA utility $u(C)=\frac{1}{1-\gamma} C^{1-\gamma}, \gamma \neq 1$.
- Assumption: Log consumption growth is normally distributed

$$
\Delta c_{t+1}=\mu_{c}+\nu_{t+1}
$$

where μ_{c} denotes expected consumption growth and $\nu_{t+1} \sim_{\text {i.i.d. }} \mathcal{N}\left(0, \sigma_{c}^{2}\right)$.

- From the Euler condition, we obtain the pricing kernel

$$
M_{t, t+1}=\mathrm{e}^{-\delta} \frac{u_{c}\left(C_{t+1}\right)}{u_{c}\left(C_{t}\right)}=\mathrm{e}^{-\delta-\gamma \Delta c_{t+1}}
$$

Example: Log-Normal Case

- Risk-free rate

$$
\mathrm{e}^{-r_{t}^{f}}=\mathbb{E}_{t}\left[M_{t, t+1}\right]=\mathbb{E}_{t}\left[\mathrm{e}^{-\delta-\gamma \Delta c_{t+1}}\right]
$$

Therefore,

$$
r_{t}^{f}=\delta+\gamma \mu_{c}-\frac{1}{2} \gamma^{2} \sigma_{c}^{2}
$$

- δ represents the role of discounting.
- $\gamma \mu_{c}$ represents intertemporal consumption smoothing.
- $-\frac{1}{2} \gamma^{2} \sigma_{c}^{2}$ represents precautionary savings.
- Risky asset with i.i.d. returns $r_{t+1} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$

$$
\mathbb{E}_{t}\left[\mathrm{e}^{-\delta-\gamma \Delta c_{t+1}+r_{t+1}}\right]=1
$$

and thus

$$
\operatorname{rp}_{t}^{i}=\mu_{i}+\frac{1}{2} \sigma_{i}^{2}-r_{t}^{f}=\gamma \operatorname{cov}\left(\Delta c_{t+1}, r_{t+1}\right)=\gamma \sigma_{c, i}
$$

Proof: Risk-free Rate

Proof: Equity Premium

Price-Dividend Ratio

- Consumption claim X is an asset paying consumption as dividends.
- It equals financial wealth of the representative investor.
- For its price, we get

$$
X_{t}=\mathbb{E}_{t}\left[M_{t, t+1}\left(X_{t+1}+C_{t+1}\right)\right]
$$

- Solve for the price-dividend ratio $Z_{t}=X_{t} / C_{t}$ which is constant in this model:

$$
\begin{aligned}
X_{t}=Z C_{t} & =\mathbb{E}_{t}\left[M_{t, t+1}\left(Z C_{t+1}+C_{t+1}\right)\right] \\
Z & =\mathbb{E}_{t}\left[M_{t, t+1}(Z+1) \frac{C_{t+1}}{C_{t}}\right] \\
\frac{Z}{1+Z} & =\mathbb{E}_{t}\left[M_{t, t+1} \mathrm{e}^{\Delta C_{t+1}}\right] \\
\frac{Z}{1+Z} & =\mathbb{E}_{t}\left[\mathrm{e}^{-\delta-(\gamma-1) \Delta c_{t+1}}\right] \\
\frac{Z}{1+Z} & =\mathrm{e}^{-\delta-(\gamma-1) \mu_{c}+\frac{1}{2}(\gamma-1)^{2} \sigma_{c}^{2}}
\end{aligned}
$$

Price-Dividend Ratio

Agenda

(1) Option Pricing in Partial Equilibrium

(2) General Equilibrium Asset Pricing

- Introduction
- Time-Additive Utility
- Consumption-based CAPM (CCAPM)
- Example: Log-Normal Case
- Asset Pricing Puzzles
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing

Calibration

- The aim of asset pricing is to find a consumption-based explanation for asset pricing moments.
- Idea: Take $\mu_{c} \approx 0.02, \mu_{i} \approx 0.07, \sigma_{c} \approx 0.02, \sigma_{i} \approx 0.16, \rho_{c, i} \approx 0.2$ and calibrate the preferences.
- Risk-premium:

$$
\begin{aligned}
\gamma=\frac{\mathrm{rp}_{t}^{i}}{\sigma_{c, i}} & =\frac{\mu_{i}+\frac{1}{2} \sigma_{i}^{2}-r_{t}^{f}}{\sigma_{c} \sigma_{i} \rho_{c, i}} \\
& =\frac{0.06+0.5 \cdot 0.16^{2}}{0.02 \cdot 0.16 \cdot 0.2}>1,000
\end{aligned}
$$

- Experimental-based estimates of risk aversion in the range from 2 to 10.
- Moral: To match the risk-premium one needs an unrealistically high degree of risk-aversion

Even worse!

- Let's try to match the risk-free rate:

$$
r_{t}^{f}=\delta+\gamma \mu_{c}-\frac{1}{2} \gamma^{2} \sigma_{c}^{2} \approx \delta+\gamma \mu_{c}
$$

- Then,

$$
\gamma \approx \frac{r_{t}^{f}-\delta}{\mu_{c}}
$$

- Typical values for δ in the range from 0.01 to 0.05 . For $\delta=0.02$, one obtains

$$
\gamma=\frac{0.01-0.02}{0.02}=-0.5
$$

For $\delta=0$, one gets $\gamma=0.5$.

- Moral: To match the risk-free rate one needs an unrealistically low degree of risk-aversion

Asset Pricing Puzzles

- Equity Premium Puzzle / Risk-free Rate Puzzle (Mehra and Prescott 1985; Weil 1993): Simple consumption-based asset pricing model cannot simultaneously explain
(1) high equity premium
(2) low risk-free rates
- Excess Volatility Puzzle (Shiller 1981): Simple consumption-based asset pricing model cannot explain high volatility of stock prices compared to the volatility of consumption/dividend growth.

Way out?

- The model considered so far is too restrictive.
- Time-additive utility
- Normally-distributed returns
- Linear dynamics
- Better specification of preferences
(1) Habit Formation (Abel 1990, Campbell and Cochrane 1999)
(2) Recursive Utility (Epstein and Zin 1989)
- Better consumption / dividend dynamics
(1) Long-run risk model (Bansal and Yaron 2004)
(2) Disaster models (Barro 2006, 2009; Barro and Jin 2015; Gabaix 2008)
- Heterogeneous Agents
- Market Frictions
- Production-based asset pricing
- Partial information

