Advanced Financial Economics I – Part 1: Discrete Time Models –

Dr. Christoph Hambel

Goethe University Frankfurt

Winter Term 2021/22

Agenda

- 1 Option Pricing in Partial Equilibrium
- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
 - 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- 6 Disaster Risk and Asset Pricing
 - 7 Summary of Benchmark Models

Agenda

- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- 6 Disaster Risk and Asset Pricing

Summary of Benchmark Models

Primary Securities

- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- One period: t = 0, T.
- Asset prices are **exogenously** given by a (n + 1)-dimensional positive process.
- Money market account S^0 with interest rate r

$$S_0^0 = 1, \qquad S_T^0 = S_0^0(1+r)$$

• *n* primary securities (stocks)

$$S = (S_t)_{t=0,T}, \qquad S_t = (S_t^0, \dots, S_t^n)^ op$$

where $S_0 \in \mathbb{R}^{n+1}$ and S_T is a (n+1)-dimensional random vector with finitely many possible outcomes.

4 / 220

A (contingent) claim guarantees a payoff C_T at T.

• A **Forward Contract** obligates the holder to buy (or sell) an asset at a fixed price *K* at a predetermined date *T*. Payoff profile:

$$C_T = S_T - K$$

• A **Call Option** offers the right (but not the obligation) to *buy* an asset at a fixed price K on or up to a specified date T. Payoff profile:

$$C_T = \max\{0, S_T - K\}$$

• A **Put Option** offers the right (but not the obligation) to *sell* an asset at a fixed price K on or up to a specified date T. Payoff profile:

$$C_T = \max\{0, K - S_T\}$$

5 / 220

Contingent Claims

Trading Strategy

- A trading strategy $\varphi = (\varphi^0, \dots, \varphi^n)^\top \in \mathbb{R}^{n+1}$ is a (n+1)-dimensional vector.
- φ^0 : number of bonds.
- $\varphi^0 S_t^0$: money amount invested in the bond.
- φ^i : number of shares of stock $i = 1, \ldots, n$.
- $\varphi^i S_t^i$: money amount invested in stock i = 1, ..., n.

Financial Wealth

Financial Wealth $X_t = X_t^{\varphi}$ at time t = 0, T is given by the portfolio value of the trading strategy

$$X_t = \varphi^\top S_t = \sum_{i=0}^n \varphi^i S_t^i.$$

It describes the portfolio value for an investor using the trading strategy φ .

Pricing of Contingent Claims

Definition

• A trading strategy φ is an arbitrage opportunity if

$$X_0^{\varphi}=0, \qquad X_T^{\varphi}\geq 0, \qquad \mathbb{P}(X_T^{\varphi}>0)>0.$$

- A model is arbitrage-free if no arbitrage opportunities exist.
- A claim C is attainable if a trading strategy φ exists such that X^φ_T = C_T. Such a strategy is called a replication strategy or hedging strategy.
- A financial market is **complete** if and only if all contingent claims are attainable.
- We only consider arbitrage-free, but not necessarily complete models.
- In models with arbitrage opportunities, very strange things can happen.

Theorem: Law of One Price

Suppose the market is arbitrage-free.

() For an attainable claim C with hedging strategy φ ,

$$C_0 = X_0^{\varphi}$$

is the unique arbitrage-free price, i.e., trading in the primary assets *and* the claim does not lead to arbitrage opportunities.

2 If $X_T^{\varphi} = X_T^{\psi}$ for trading strategies φ and ψ , then

$$X_0^{\varphi}=X_0^{\psi}.$$

Proof: LOP

Proof: LOP

Example: Binomial Model – Model Setup

We consider the simplest possible model with only two assets

- Money Market Account $B_1 = B_0(1 + r)$
- Stock $S_1 = S_0(1 + y)$, where

$$p = \mathbb{P}(y = u) = 1 - \mathbb{P}(y = d) \in (0, 1)$$

• u > r > d.

• Contingent claim with payoff:

$$C_T = c_u \mathbf{1}_{\{y=u\}} + c_d \mathbf{1}_{\{y=d\}}$$

• Example: Call Option with strike price $S_0(1+u) > K > S_0(1+d)$:

$$c_u = S_0(1+u) - K, \qquad c_d = 0$$

Example: Binomial Model – Replication

• A replication strategy has to satisfy the following linear system

$$c_u = \varphi^0 S_0^0 (1+r) + \varphi^1 S_0^1 (1+u)$$

$$c_d = \varphi^0 S_0^0 (1+r) + \varphi^1 S_0^1 (1+d)$$

• This system has a unique solution

$$\varphi^0 S_0^0 = \frac{c_d(1+u) - c_u(1+d)}{(1+r)(u-d)}, \qquad \varphi^1 S_0^1 = \frac{c_u - c_d}{u-d}.$$

• The price of the claim is thus

$$C_0 = X_0^{\varphi} = \varphi^0 S_0^0 + \varphi^1 S_0^1 = \frac{q}{1+r} c_u + \frac{1-q}{1+r} c_d$$

where $q = \frac{r-d}{u-d}$.

Example: Binomial Model – Risk-Neutral Probability

• The price has thus the following representation

$$C_0 = \mathbb{E}^{\mathbb{Q}}\left[\frac{C_T}{1+r}\right]$$

where \mathbb{Q} is a probability measure with

$$\mathbb{Q}(Y = u) = q = 1 - \mathbb{Q}(Y = d).$$

- Such a measure is called a risk-neutral measure.
- \bullet Under $\mathbb Q,$ prices can be calculated as expected discounted cashflows.
- There is no risk-premium involved.
- Asset prices satisfy the pricing relation

$$S_0^i = \mathbb{E}^{\mathbb{Q}}\left[\frac{S_T^i}{1+r}\right].$$

In the binomial example, we constructed a probability measure $\mathbb Q$ that relates in a certain sense to $\mathbb P.$

Definition

Two probability measures \mathbb{P} and \mathbb{Q} are said to be equivalent if both measures possess the same null sets, i.e., for all events $A \in A$

$$\mathbb{P}(A) = 0 \iff \mathbb{Q}(A) = 0.$$

We use the notation $\mathbb{P}\sim\mathbb{Q}$ for equivalent probability measures.

15/220

Change of Measure – Equivalent Probability Measures

The following theorem states how to switch between two equivalent probability measures.

Theorem: Radon-Nikodym

Let $\mathbb{P} \sim \mathbb{Q}$ denote two equivalent probability measures, then there exists a unique (a.s.), positive random variable $Z = \frac{d\mathbb{Q}}{d\mathbb{P}}$ such that

$$\mathbb{E}^{\mathbb{Q}}[Y] = \mathbb{E}^{\mathbb{P}}[ZY]$$

 $\mathbb{E}^{\mathbb{P}}[Y] = \mathbb{E}^{\mathbb{Q}}\Big[rac{Y}{Z}\Big]$

for all random variables $Y : \Omega \to \mathbb{R}$.

In our example, the process Z is just a binomial random variable given by

$$Z^u = \frac{q}{p}, \qquad Z^d = \frac{1-q}{1-p}.$$

Definition

A probability measure $\mathbb{Q} \sim \mathbb{P}$ is called a **risk-neutral measure** or an **equivalent martingale measure** if and only if

$$S_0^i = \mathbb{E}^{\mathbb{Q}}\Big[rac{S_T^i}{1+r}\Big]$$

for all assets $i = 0, \ldots, n$.

- Under a risk-neutral measure, one can calculate asset prices as a discounted expected value.
- The pricing problem thus collapses to the calculation of an expectation.

Theorem: Risk-Neutral Pricing

Suppose the market is arbitrage-free. Let \mathbb{Q} be a risk-neutral probability measure and let *C* be an attainable claim with hedging strategy φ . Then its unique arbitrage-free price is given by

$$C_0 = X_0^{\varphi} = \mathbb{E}^{\mathbb{Q}} \Big[\frac{C_T}{1+r} \Big]$$

Proof: Risk-Neutral Pricing

- In general, \mathbb{Q} is more pessimistic than \mathbb{P} .
- In reality, most investors are risk-averse and demand for a positive risk premium.
- The pricing relation is thus

$$\mathbb{E}^{\mathbb{Q}}\left[\frac{C_{T}}{1+r}\right] = \mathbb{E}^{\mathbb{P}}\left[\frac{C_{T}}{1+r+\mathrm{rp}_{T}}\right]$$

- Notice that $\frac{1}{1+r+rp_T} < \frac{1}{1+r}$.
- If both expectations are equal, the risk-neutral measure puts more weight on bad events.
- In the binomial example $Z^u = \frac{q}{p} < 1$, $Z^d = \frac{1-q}{1-p} > 1$.

Example: Binomial Model – Stochastic Discount Factor

• Recall: The price of the claim is

$$C_0 = \frac{q}{1+r}c_u + \frac{1-q}{1+r}c_d$$

= $p\frac{q}{p(1+r)}c_u + (1-p)\frac{1-q}{(1-p)(1+r)}c_d.$

• Therefore, the price can be expressed as

$$C_0 = \mathbb{E}^{\mathbb{P}}\Big[C_T \cdot M_T\Big]$$

where
$$M_T^u = \frac{q}{p(1+r)}$$
 and $M_T^d = \frac{1-q}{(1-p)(1+r)}$, i.e., $M_T = \frac{Z}{1+r}$.

- Such a random variable M_T is called a **stochastic discount factor** (SDF) or **pricing kernel**.
- Using the SDF, one can calculate asset prices under \mathbb{P} .

Definition

A random variable M_T is called a **stochastic discount factor** or a **pricing kernel** if and only if

$$S_0^i = \mathbb{E}^{\mathbb{P}}\Big[S_T^i \cdot M_T\Big]$$

for all assets $i = 0, \ldots, n$.

- Again, the pricing problem collapses to the calculation of an expectation.
- But: given a SDF, you can price under \mathbb{P} instead of \mathbb{Q} .
- In the following, we use the notation $\mathbb{E}[\cdot] = \mathbb{E}^{\mathbb{P}}[\cdot]$.

22 / 220

Stochastic Discount Factor and the Risk-free Rate

• From the definition of the SDF, it follows that

$$S_0^0 = \mathbb{E} \Big[S_T^0 \cdot M_T \Big]$$
$$S_0^0 = \mathbb{E} \Big[S_0^0 \cdot M_T \Big] (1+r)$$

• Therefore,

$$\frac{1}{1+r} = \mathbb{E}[M_T]$$

or

$$r=\frac{1}{\mathbb{E}[M_T]}-1.$$

• This relation holds in very complicated models.

Theorem: Stochastic Discount Factor

Suppose the market is arbitrage-free. Let M be a stochastic discount factor and let C be an attainable claim with hedging strategy φ . Then its unique arbitrage-free price is given by

$$C_0 = X_0^{\varphi} = \mathbb{E}\Big[C_T \cdot M_T\Big].$$

Given a risk-neutral measure $\mathbb{Q},$ the SDF can be expressed as

$$M_T = \frac{1}{1+r} \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}},$$

i.e., it reflects both discounting with the risk-free interest rate and a change of measure from $\mathbb P$ to $\mathbb Q.$

Proof: Stochastic Discount Factor

Example: Put-Call Parity

Example: Put-Call Parity

Agenda

- Multi-period Model
- 2 General Equilibrium Asset Pricing
- 3 Habit Formation and Asset Pricing
- 4 Recursive Utility
- 5 Long-Run Risk and Asset Pricing
- Disaster Risk and Asset Pricing

Summary of Benchmark Models

Primary Securities in Discrete Time

- Probability space (Ω, A, ℙ) with filtration F = (F_t)_{t=0,...,T} modeling information.
- Trading dates: $t = 0, \ldots, T$
- Asset prices are **exogenously** given by a (n + 1)-dimensional positive adapted process.
- Money market account S^0 with interest rate r_t

$$S_0^0 > 0, \qquad S_t^0 = S_{t-1}^0(1+r_t)$$

• *n* Primary securities (stocks)

$$S = (S_t)_{t=0,\dots,T}, \qquad S_t = (S_t^0,\dots,S_t^n)^ op$$

where S is a (n + 1)-dimensional adapted process.

Sigma-Algebras, Information, and Conditional Expectations

Sigma-Algebras, Information, and Conditional Expectations

Sigma-Algebras, Information, and Conditional Expectations

Trading in Discrete Time

A trading strategy

$$\varphi = (\varphi_t)_{t=0,\dots,T}, \qquad \varphi = (\varphi_t^0,\dots,\varphi_t^n)^\top$$

is a (n+1)-dimensional adapted process.

- φ_t^0 : number of bonds held in (t, t+1].
- φ_t^i : number of shares of stock i = 1, ..., n held in (t, t + 1].

Financial Wealth

Financial Wealth $X_t = X_t^{\varphi}$ at time t is given by

$$X_t = \varphi_t^\top S_t = \sum_{i=0}^n \varphi_t^i S_t^i.$$

We consider an investor with the following properties:

- No exogenous income or expenses.
- Trading does not cause transaction costs or taxes.
- Changes in wealth only caused by changes in asset prices.

Definition

A trading strategy φ is **self-financing** if

$$X_t = \varphi_t^\top S_t = \varphi_{t-1}^\top S_t.$$

• Wealth after trading equals wealth before trading.

Trading in Discrete Time

For a self-financing strategy, financial wealth satisfies

$$\begin{aligned} X_{t+1}^{\varphi} &= \varphi_{t+1}^{\top} S_{t+1} \\ &= \varphi_t^{\top} S_{t+1} \\ &= \varphi_t^{\top} (S_{t+1} - S_t + S_t) \\ &= \varphi_t^{\top} S_t + \varphi_t^{\top} (S_{t+1} - S_t) \\ &= X_t^{\varphi} + \varphi_t^{\top} \Delta S_t \end{aligned}$$

Consequently,

$$\Delta X_t^{\varphi} = \varphi_t^{\top} \Delta S_t$$

and

$$X_t^{\varphi} = X_0 + \sum_{\ell=1}^t \Delta X_{\ell}^{\varphi} = X_0 + \sum_{\ell=1}^t \varphi_{\ell}^{\top} \Delta S_{\ell}$$

Definition

• A trading strategy φ is an **arbitrage opportunity** if

$$X_0^{arphi}=0, \qquad X_T^{arphi}\geq 0, \qquad \mathbb{P}(X_T^{arphi}>0)>0.$$

- A model is arbitrage-free if no arbitrage opportunities exist.
- A claim C is **attainable** if there exists a *self-financing* trading strategy φ such that $X_T^{\varphi} = C_T$. Such a strategy is called a **replication strategy** or **hedging strategy**.
- A financial market is complete if and only if all contingent claims are attainable.

Pricing of Contingent Claims

- A multi-period model consists of a sequence of single-period models.
- A multi-period model is arbitrage-free if all single-period models are arbitrage-free (Delbean and Schachermeyer, 2006).
- All relevant pricing relations carry over.
- We denote the discounted asset prices by \widetilde{S}^i , i.e.,

$$\widetilde{S}_t^i = \frac{S_t^i}{S_t^0}.$$

Definition

A stochastic process $X = (X_t)_{t=0,...,T}$ is called a \mathbb{P} -martingale if

$$\mathbb{E}^{\mathbb{P}}[X_{t+1} \mid \mathcal{F}_t] = X_t.$$

Definition

A probability measure Q ~ P is a risk-neutral measure or an equivalent martingale measure (EMM) if Sⁱ is a martingale under Q for all i = 0,..., n, i.e.,

$$\widetilde{S}_t^i = \mathbb{E}_t^{\mathbb{Q}}[\widetilde{S}_{t+1}^i].$$

A non-negative stochastic process M = (M_t)_{t=0,...,T} is called a stochastic discount factor or a pricing kernel, if MSⁱ is a martingale under ℙ for all i = 0,...,n, i.e.,

$$S_t^i = \mathbb{E}_t[S_{t+1}^i M_{t+1}] \frac{1}{M_t}.$$

Theorem: Pricing in Discrete Time

Assume that the market is free of arbitrage. Let C be an attainable claim with hedging strategy φ .

 Suppose that Q is a risk-neutral measure. Then, the unique arbitrage-free price of C is

$$C_t = \mathbb{E}_t^{\mathbb{Q}} \Big[\frac{C_T}{S_T^0} \Big] S_t^0.$$

• Suppose that *M* is a stochastic discount factor. Then, the unique arbitrage-free price of *C* is

$$C_t = \mathbb{E}_t [C_T M_T] \frac{1}{M_t}.$$

First Fundamental Theorem of Asset Pricing

The following are equivalent

• The market is free of arbitrage.

2 There exists a risk-neutral probability measure $\mathbb{Q} \sim \mathbb{P}$.

Second Fundamental Theorem of Asset Pricing

Suppose the market is free of arbitrage. The following are equivalent

- The market is complete.
- 2 There exists a unique risk-neutral probability measure $\mathbb{Q} \sim \mathbb{P}$.

42 / 220

- Existence and uniqueness of risk-neutral probability measure are equivalent to existence and uniqueness of stochastic discount factor.
- In continuous time, the easy directions of the FTAPs still hold, i.e.,
 - **1** Existence of risk-neutral probability measure \Rightarrow No arbitrage.
 - 2 Market completeness \Rightarrow Uniqueness of risk-neutral probability measure.
- For the converse directions, one has to replace the concepts of no arbitrage and EMM by somewhat more involved concepts (NFLVR, ELMM, $E\sigma$ MM), see Delbean and Schachermeyer (1994, 1998).

Example: Cox, Ross, Rubinstein (1979)

• The CRR model extends the binomial model.

• Bond price:

$$B_t = (1+r)^t$$

Stock price:

$$S_t = S_0 \prod_{t=1}^T (1+y_t)$$

where y_t are iid with

$$p = \mathbb{P}(y_1 = u) = 1 - \mathbb{P}(y_1 = d)$$

- It is used in practice to approximate continuous-time models.
- One can show that the solution converges to the Black-Scholes formula as the number of time steps increases.

Christoph Hambel

Advanced Financial Economics I

46 / 220

Example: Cox, Ross, Rubinstein (1979)

- We have shown that the one-period model is free of arbitrage if u > r > d.
- Therefore, the CRR model is free of arbitrage if u > r > d and thus a risk-neutral measure exists.
- For a given claim one can find a replicating strategy φ by solving a system of two linear equations at each node of the event tree.
- Under the NA condition u > r > d these systems have unique solutions.
- The solutions provide the replicating strategy in the corresponding state at the corresponding time.
- Consequently, the model is complete and the risk-neutral measure is unique.

Arbitrage Opportunity in CRR