Advanced Financial Economics I

- Part 1: Discrete Time Models -

Dr. Christoph Hambel
Goethe University Frankfurt

Winter Term 2021/22

Agenda

(1) Option Pricing in Partial Equilibrium
(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing
(7) Summary of Benchmark Models

Agenda

(1) Option Pricing in Partial Equilibrium

- One-Period Model
- Multi-period Model
(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing
(7) Summary of Benchmark Models

Primary Securities

- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- One period: $t=0, T$.
- Asset prices are exogenously given by a $(n+1)$-dimensional positive process.
- Money market account S^{0} with interest rate r

$$
S_{0}^{0}=1, \quad S_{T}^{0}=S_{0}^{0}(1+r)
$$

- n primary securities (stocks)

$$
S=\left(S_{t}\right)_{t=0, T}, \quad S_{t}=\left(S_{t}^{0}, \ldots, S_{t}^{n}\right)^{\top}
$$

where $S_{0} \in \mathbb{R}^{n+1}$ and S_{T} is a $(n+1)$-dimensional random vector with finitely many possible outcomes.

Contingent Claims

A (contingent) claim guarantees a payoff C_{T} at T.

- A Forward Contract obligates the holder to buy (or sell) an asset at a fixed price K at a predetermined date T. Payoff profile:

$$
C_{T}=S_{T}-K
$$

- A Call Option offers the right (but not the obligation) to buy an asset at a fixed price K on or up to a specified date T. Payoff profile:

$$
C_{T}=\max \left\{0, S_{T}-K\right\}
$$

- A Put Option offers the right (but not the obligation) to sell an asset at a fixed price K on or up to a specified date T. Payoff profile:

$$
C_{T}=\max \left\{0, K-S_{T}\right\}
$$

Contingent Claims

Trading Strategy

- A trading strategy $\varphi=\left(\varphi^{0}, \ldots, \varphi^{n}\right)^{\top} \in \mathbb{R}^{n+1}$ is a ($n+1$)-dimensional vector.
- φ^{0} : number of bonds.
- $\varphi^{0} S_{t}^{0}$: money amount invested in the bond.
- φ^{i} : number of shares of stock $i=1, \ldots, n$.
- $\varphi^{i} S_{t}^{i}$: money amount invested in stock $i=1, \ldots, n$.

Financial Wealth

Financial Wealth $X_{t}=X_{t}^{\varphi}$ at time $t=0, T$ is given by the portfolio value of the trading strategy

$$
X_{t}=\varphi^{\top} S_{t}=\sum_{i=0}^{n} \varphi^{i} S_{t}^{i}
$$

It describes the portfolio value for an investor using the trading strategy φ.

Pricing of Contingent Claims

Definition

- A trading strategy φ is an arbitrage opportunity if

$$
X_{0}^{\varphi}=0, \quad X_{T}^{\varphi} \geq 0, \quad \mathbb{P}\left(X_{T}^{\varphi}>0\right)>0
$$

- A model is arbitrage-free if no arbitrage opportunities exist.
- A claim C is attainable if a trading strategy φ exists such that $X_{T}^{\varphi}=C_{T}$. Such a strategy is called a replication strategy or hedging strategy.
- A financial market is complete if and only if all contingent claims are attainable.
- We only consider arbitrage-free, but not necessarily complete models.
- In models with arbitrage opportunities, very strange things can happen.

Pricing by Replication

Theorem: Law of One Price

Suppose the market is arbitrage-free.
(1) For an attainable claim C with hedging strategy φ,

$$
C_{0}=X_{0}^{\varphi}
$$

is the unique arbitrage-free price, i.e., trading in the primary assets and the claim does not lead to arbitrage opportunities.
(2) If $X_{T}^{\varphi}=X_{T}^{\psi}$ for trading strategies φ and ψ, then

$$
X_{0}^{\varphi}=X_{0}^{\psi}
$$

Proof: LOP

Proof: LOP

Example: Binomial Model - Model Setup

We consider the simplest possible model with only two assets

- Money Market Account $B_{1}=B_{0}(1+r)$
- Stock $S_{1}=S_{0}(1+y)$, where

$$
p=\mathbb{P}(y=u)=1-\mathbb{P}(y=d) \in(0,1)
$$

- $u>r>d$.
- Contingent claim with payoff:

$$
C_{T}=c_{u} \mathbf{1}_{\{y=u\}}+c_{d} \mathbf{1}_{\{y=d\}}
$$

- Example: Call Option with strike price $S_{0}(1+u)>K>S_{0}(1+d)$:

$$
c_{u}=S_{0}(1+u)-K, \quad c_{d}=0
$$

Example: Binomial Model - Replication

- A replication strategy has to satisfy the following linear system

$$
\begin{aligned}
& c_{u}=\varphi^{0} S_{0}^{0}(1+r)+\varphi^{1} S_{0}^{1}(1+u) \\
& c_{d}=\varphi^{0} S_{0}^{0}(1+r)+\varphi^{1} S_{0}^{1}(1+d)
\end{aligned}
$$

- This system has a unique solution

$$
\varphi^{0} S_{0}^{0}=\frac{c_{d}(1+u)-c_{u}(1+d)}{(1+r)(u-d)}, \quad \varphi^{1} S_{0}^{1}=\frac{c_{u}-c_{d}}{u-d} .
$$

- The price of the claim is thus

$$
C_{0}=X_{0}^{\varphi}=\varphi^{0} S_{0}^{0}+\varphi^{1} S_{0}^{1}=\frac{q}{1+r} c_{u}+\frac{1-q}{1+r} c_{d}
$$

where $q=\frac{r-d}{u-d}$.

Example: Binomial Model - Risk-Neutral Probability

- The price has thus the following representation

$$
C_{0}=\mathbb{E}^{\mathbb{Q}}\left[\frac{C_{T}}{1+r}\right]
$$

where \mathbb{Q} is a probability measure with

$$
\mathbb{Q}(Y=u)=q=1-\mathbb{Q}(Y=d)
$$

- Such a measure is called a risk-neutral measure.
- Under \mathbb{Q}, prices can be calculated as expected discounted cashflows.
- There is no risk-premium involved.
- Asset prices satisfy the pricing relation

$$
S_{0}^{i}=\mathbb{E}^{\mathbb{Q}}\left[\frac{S_{T}^{i}}{1+r}\right]
$$

Change of Measure - Equivalent Probability Measures

In the binomial example, we constructed a probability measure \mathbb{Q} that relates in a certain sense to \mathbb{P}.

Definition

Two probability measures \mathbb{P} and \mathbb{Q} are said to be equivalent if both measures possess the same null sets, i.e., for all events $A \in \mathcal{A}$

$$
\mathbb{P}(A)=0 \quad \Longleftrightarrow \quad \mathbb{Q}(A)=0
$$

We use the notation $\mathbb{P} \sim \mathbb{Q}$ for equivalent probability measures.

Change of Measure - Equivalent Probability Measures

The following theorem states how to switch between two equivalent probability measures.

Theorem: Radon-Nikodym

Let $\mathbb{P} \sim \mathbb{Q}$ denote two equivalent probability measures, then there exists a unique (a.s.), positive random variable $Z=\frac{\mathrm{dQ}}{\mathrm{dP}}$ such that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}[Y] & =\mathbb{E}^{\mathbb{P}}[Z Y] \\
\mathbb{E}^{\mathbb{P}}[Y] & =\mathbb{E}^{\mathbb{Q}}\left[\frac{Y}{Z}\right]
\end{aligned}
$$

for all random variables $Y: \Omega \rightarrow \mathbb{R}$.
In our example, the process Z is just a binomial random variable given by

$$
Z^{u}=\frac{q}{p}, \quad Z^{d}=\frac{1-q}{1-p}
$$

Risk-Neutral Pricing

Definition

A probability measure $\mathbb{Q} \sim \mathbb{P}$ is called a risk-neutral measure or an equivalent martingale measure if and only if

$$
S_{0}^{i}=\mathbb{E}^{\mathbb{Q}}\left[\frac{S_{T}^{i}}{1+r}\right]
$$

for all assets $i=0, \ldots, n$.

- Under a risk-neutral measure, one can calculate asset prices as a discounted expected value.
- The pricing problem thus collapses to the calculation of an expectation.

Risk-Neutral Pricing

Theorem: Risk-Neutral Pricing

Suppose the market is arbitrage-free. Let \mathbb{Q} be a risk-neutral probability measure and let C be an attainable claim with hedging strategy φ. Then its unique arbitrage-free price is given by

$$
C_{0}=X_{0}^{\varphi}=\mathbb{E}^{\mathbb{Q}}\left[\frac{C_{T}}{1+r}\right]
$$

Proof: Risk-Neutral Pricing

Relation between \mathbb{Q} and \mathbb{P}

- In general, \mathbb{Q} is more pessimistic than \mathbb{P}.
- In reality, most investors are risk-averse and demand for a positive risk premium.
- The pricing relation is thus

$$
\mathbb{E}^{\mathbb{Q}}\left[\frac{C_{T}}{1+r}\right]=\mathbb{E}^{\mathbb{P}}\left[\frac{C_{T}}{1+r+\mathrm{rp}_{T}}\right]
$$

- Notice that $\frac{1}{1+r+\mathrm{rp}_{T}}<\frac{1}{1+r}$.
- If both expectations are equal, the risk-neutral measure puts more weight on bad events.
- In the binomial example $Z^{u}=\frac{q}{p}<1, Z^{d}=\frac{1-q}{1-p}>1$.

Example: Binomial Model - Stochastic Discount Factor

- Recall: The price of the claim is

$$
\begin{aligned}
C_{0} & =\frac{q}{1+r} c_{u}+\frac{1-q}{1+r} c_{d} \\
& =p \frac{q}{p(1+r)} c_{u}+(1-p) \frac{1-q}{(1-p)(1+r)} c_{d} .
\end{aligned}
$$

- Therefore, the price can be expressed as

$$
C_{0}=\mathbb{E}^{\mathbb{P}}\left[C_{T} \cdot M_{T}\right]
$$

where $M_{T}^{u}=\frac{q}{p(1+r)}$ and $M_{T}^{d}=\frac{1-q}{(1-p)(1+r)}$, i.e., $M_{T}=\frac{Z}{1+r}$.

- Such a random variable M_{T} is called a stochastic discount factor (SDF) or pricing kernel.
- Using the SDF, one can calculate asset prices under \mathbb{P}.

Pricing under \mathbb{P}

Definition

A random variable M_{T} is called a stochastic discount factor or a pricing kernel if and only if

$$
S_{0}^{i}=\mathbb{E}^{\mathbb{P}}\left[S_{T}^{i} \cdot M_{T}\right]
$$

for all assets $i=0, \ldots, n$.

- Again, the pricing problem collapses to the calculation of an expectation.
- But: given a SDF, you can price under \mathbb{P} instead of \mathbb{Q}.
- In the following, we use the notation $\mathbb{E}[\cdot]=\mathbb{E}^{\mathbb{P}}[\cdot]$.

Stochastic Discount Factor and the Risk-free Rate

- From the definition of the SDF, it follows that

$$
\begin{aligned}
& S_{0}^{0}=\mathbb{E}\left[S_{T}^{0} \cdot M_{T}\right] \\
& S_{0}^{0}=\mathbb{E}\left[S_{0}^{0} \cdot M_{T}\right](1+r)
\end{aligned}
$$

- Therefore,

$$
\frac{1}{1+r}=\mathbb{E}\left[M_{T}\right]
$$

or

$$
r=\frac{1}{\mathbb{E}\left[M_{T}\right]}-1
$$

- This relation holds in very complicated models.

Pricing under \mathbb{P}

Theorem: Stochastic Discount Factor

Suppose the market is arbitrage-free. Let M be a stochastic discount factor and let C be an attainable claim with hedging strategy φ. Then its unique arbitrage-free price is given by

$$
C_{0}=X_{0}^{\varphi}=\mathbb{E}\left[C_{T} \cdot M_{T}\right]
$$

Given a risk-neutral measure \mathbb{Q}, the SDF can be expressed as

$$
M_{T}=\frac{1}{1+r} \frac{\mathrm{~d} \mathbb{Q}}{\mathrm{dP}}
$$

i.e., it reflects both discounting with the risk-free interest rate and a change of measure from \mathbb{P} to \mathbb{Q}.

Proof: Stochastic Discount Factor

Example: Put-Call Parity

Example: Put-Call Parity

Agenda

(1) Option Pricing in Partial Equilibrium

- One-Period Model
- Multi-period Model
(2) General Equilibrium Asset Pricing
(3) Habit Formation and Asset Pricing
(4) Recursive Utility
(5) Long-Run Risk and Asset Pricing
(6) Disaster Risk and Asset Pricing
(a) Summary of Benchmark Models

Primary Securities in Discrete Time

- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with filtration $\mathcal{F}=\left(\mathcal{F}_{t}\right)_{t=0, \ldots, T}$ modeling information.
- Trading dates: $t=0, \ldots, T$
- Asset prices are exogenously given by a $(n+1)$-dimensional positive adapted process.
- Money market account S^{0} with interest rate r_{t}

$$
S_{0}^{0}>0, \quad S_{t}^{0}=S_{t-1}^{0}\left(1+r_{t}\right)
$$

- n Primary securities (stocks)

$$
S=\left(S_{t}\right)_{t=0, \ldots, T}, \quad S_{t}=\left(S_{t}^{0}, \ldots, S_{t}^{n}\right)^{\top}
$$

where S is a $(n+1)$-dimensional adapted process.

Sigma-Algebras, Information, and Conditional Expectations

Sigma-Algebras, Information, and Conditional Expectations

Sigma-Algebras, Information, and Conditional Expectations

Trading in Discrete Time

- A trading strategy

$$
\varphi=\left(\varphi_{t}\right)_{t=0, \ldots, T}, \quad \varphi=\left(\varphi_{t}^{0}, \ldots, \varphi_{t}^{n}\right)^{\top}
$$

is a $(n+1)$-dimensional adapted process.

- φ_{t}^{0} : number of bonds held in $(t, t+1]$.
- φ_{t}^{i} : number of shares of stock $i=1, \ldots, n$ held in $(t, t+1]$.

Financial Wealth

Financial Wealth $X_{t}=X_{t}^{\varphi}$ at time t is given by

$$
X_{t}=\varphi_{t}^{\top} S_{t}=\sum_{i=0}^{n} \varphi_{t}^{i} S_{t}^{i}
$$

Trading in Discrete Time

We consider an investor with the following properties:

- No exogenous income or expenses.
- Trading does not cause transaction costs or taxes.
- Changes in wealth only caused by changes in asset prices.

Definition

A trading strategy φ is self-financing if

$$
X_{t}=\varphi_{t}^{\top} S_{t}=\varphi_{t-1}^{\top} S_{t}
$$

- Wealth after trading equals wealth before trading.

Trading in Discrete Time

For a self-financing strategy, financial wealth satisfies

$$
\begin{aligned}
X_{t+1}^{\varphi} & =\varphi_{t+1}^{\top} S_{t+1} \\
& =\varphi_{t}^{\top} S_{t+1} \\
& =\varphi_{t}^{\top}\left(S_{t+1}-S_{t}+S_{t}\right) \\
& =\varphi_{t}^{\top} S_{t}+\varphi_{t}^{\top}\left(S_{t+1}-S_{t}\right) \\
& =X_{t}^{\varphi}+\varphi_{t}^{\top} \Delta S_{t}
\end{aligned}
$$

Consequently,

$$
\Delta X_{t}^{\varphi}=\varphi_{t}^{\top} \Delta S_{t}
$$

and

$$
X_{t}^{\varphi}=X_{0}+\sum_{\ell=1}^{t} \Delta X_{\ell}^{\varphi}=X_{0}+\sum_{\ell=1}^{t} \varphi_{\ell}^{\top} \Delta S_{\ell}
$$

No Arbitrage and Market Completeness Revisited

Definition

- A trading strategy φ is an arbitrage opportunity if

$$
X_{0}^{\varphi}=0, \quad X_{T}^{\varphi} \geq 0, \quad \mathbb{P}\left(X_{T}^{\varphi}>0\right)>0
$$

- A model is arbitrage-free if no arbitrage opportunities exist.
- A claim C is attainable if there exists a self-financing trading strategy φ such that $X_{T}^{\varphi}=C_{T}$. Such a strategy is called a replication strategy or hedging strategy.
- A financial market is complete if and only if all contingent claims are attainable.

Pricing of Contingent Claims

- A multi-period model consists of a sequence of single-period models.
- A multi-period model is arbitrage-free if all single-period models are arbitrage-free (Delbean and Schachermeyer, 2006).
- All relevant pricing relations carry over.
- We denote the discounted asset prices by \widetilde{S}^{i}, i.e.,

$$
\widetilde{S}_{t}^{i}=\frac{S_{t}^{i}}{S_{t}^{0}}
$$

Definition

A stochastic process $X=\left(X_{t}\right)_{t=0, \ldots, T}$ is called a \mathbb{P}-martingale if

$$
\mathbb{E}^{\mathbb{P}}\left[X_{t+1} \mid \mathcal{F}_{t}\right]=X_{t}
$$

Examples for Martingales

Examples for Martingales

Pricing of Contingent Claims

Definition

- A probability measure $\mathbb{Q} \sim \mathbb{P}$ is a risk-neutral measure or an equivalent martingale measure (EMM) if \widetilde{S}^{i} is a martingale under \mathbb{Q} for all $i=0, \ldots, n$, i.e.,

$$
\widetilde{S}_{t}^{i}=\mathbb{E}_{t}^{\mathbb{Q}}\left[\widetilde{S}_{t+1}^{i}\right]
$$

- A non-negative stochastic process $M=\left(M_{t}\right)_{t=0, \ldots, T}$ is called a stochastic discount factor or a pricing kernel, if $M S^{i}$ is a martingale under \mathbb{P} for all $i=0, \ldots, n$, i.e.,

$$
S_{t}^{i}=\mathbb{E}_{t}\left[S_{t+1}^{i} M_{t+1}\right] \frac{1}{M_{t}}
$$

Pricing of Contingent Claims

Theorem: Pricing in Discrete Time

Assume that the market is free of arbitrage. Let C be an attainable claim with hedging strategy φ.

- Suppose that \mathbb{Q} is a risk-neutral measure. Then, the unique arbitrage-free price of C is

$$
C_{t}=\mathbb{E}_{t}^{\mathbb{Q}}\left[\frac{C_{T}}{S_{T}^{0}}\right] S_{t}^{0}
$$

- Suppose that M is a stochastic discount factor. Then, the unique arbitrage-free price of C is

$$
C_{t}=\mathbb{E}_{t}\left[C_{T} M_{T}\right] \frac{1}{M_{t}}
$$

Fundamental Theorems of Asset Pricing

First Fundamental Theorem of Asset Pricing

The following are equivalent
(1) The market is free of arbitrage.
(2) There exists a risk-neutral probability measure $\mathbb{Q} \sim \mathbb{P}$.

Second Fundamental Theorem of Asset Pricing

Suppose the market is free of arbitrage. The following are equivalent
(1) The market is complete.
(2) There exists a unique risk-neutral probability measure $\mathbb{Q} \sim \mathbb{P}$.

Proof: FTAP 1

Proof: FTAP 1

Fundamental Theorems of Asset Pricing

- Existence and uniqueness of risk-neutral probability measure are equivalent to existence and uniqueness of stochastic discount factor.
- In continuous time, the easy directions of the FTAPs still hold, i.e.,
(1) Existence of risk-neutral probability measure \Rightarrow No arbitrage.
(2) Market completeness \Rightarrow Uniqueness of risk-neutral probability measure.
- For the converse directions, one has to replace the concepts of no arbitrage and EMM by somewhat more involved concepts (NFLVR, ELMM, E σ MM), see Delbean and Schachermeyer (1994, 1998).

Example: Cox, Ross, Rubinstein (1979)

- The CRR model extends the binomial model.
- Bond price:

$$
B_{t}=(1+r)^{t}
$$

- Stock price:

$$
S_{t}=S_{0} \prod_{t=1}^{T}\left(1+y_{t}\right)
$$

where y_{t} are iid with

$$
p=\mathbb{P}\left(y_{1}=u\right)=1-\mathbb{P}\left(y_{1}=d\right)
$$

- It is used in practice to approximate continuous-time models.
- One can show that the solution converges to the Black-Scholes formula as the number of time steps increases.

Example: Cox, Ross, Rubinstein (1979)

- We have shown that the one-period model is free of arbitrage if $u>r>d$.
- Therefore, the CRR model is free of arbitrage if $u>r>d$ and thus a risk-neutral measure exists.
- For a given claim one can find a replicating strategy φ by solving a system of two linear equations at each node of the event tree.
- Under the NA condition $u>r>d$ these systems have unique solutions.
- The solutions provide the replicating strategy in the corresponding state at the corresponding time.
- Consequently, the model is complete and the risk-neutral measure is unique.

Arbitrage Opportunity in CRR

Completeness

