Finanzderivate und Risikomanagement

Dr. Christoph Hambel

Goethe Universität Frankfurt Fachbereich Wirtschaftswissenschaften Abteilung Finanzen

Sommer-Semester 2021

Teil VII

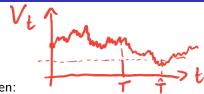
Bewertung von Ausfallrisiken

Inhaltsverzeichnis

- Grundlagen
- 2 Merton Firmenwertmodell

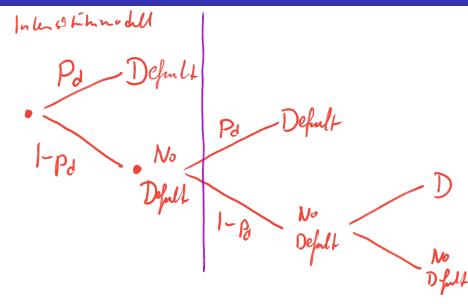
- Versprochene Zahlungen können nicht geleistet werden:
 - Kreditausfall
 - Kontrahentenrisiko bei Derivatgeschäften
 - ...
- Bewertungsproblem: Niedrigerer Preis wegen Ausfallrisiko, aber um wie viel?
- Wichtigste Determinanten
 - Ausfallwahrscheinlichkeit
 - Loss given default

- Wichtiger Unterschied: historische vs. risikoneutrale Ausfallwahrscheinlichkeiten
 - Historisch: werden aus tatsächlichen Kreditausfällen geschätzt
 - Risikoneutral: implizit durch Preise von Finanzprodukten gegeben
- Bedingte vs. unbedingte Ausfallwahrscheinlichkeiten
 - Unbedingt: Ausfallwahrscheinlichkeit in t, gegeben dem Anfangszustand $\mathcal{P}(\gamma = t)$
 - Bedingt: Ausfallwahrscheinlichkeit in t, gegeben kein Ausfall vor t


T: destpont des Une détanifels PIT= + 17>

 Beispiel: Ausfallwahrscheinlichkeit in t, gegeben kein Ausfall vor t, ist 2% p.a.

Jahr	bed.	unbed.
1	0.02	0.02
2	0.02	0.0196
3	0.02	0.0192


- Erklärung:
 - Ausfallwahrscheinlichkeit im ersten Jahr: 2% 🗸
 - Überlebende Firmen fallen im nächsten Jahr aus mit einer Wahrscheinlichkeit von 0.02(1-0.02) = 0.0196

$$P(7=3)=0.02\cdot0.98^{2}=1.31\%$$

- Modelltypen:
 - Structural Models: Firmenwertmodelle
 → Merton
 Modelliere den Firmenwert mittels eines Firm Value Process.
 ⇒ Ausfall tritt ein, wenn Wert der Assets zu gering um
 - Verbindlichkeiten abzudecken.

 Reduced-Form Models: Intensitätenmodelle:
 - Latenter Ausfallprozess: entweder 0 (kein Ausfall) oder 1 (Ausfall) Modelliert durch Sprungprozess mit Sprungwahrscheinlichkeit
- · Datij-Mobelle S&P, F.ker, Moodys

Inhaltsverzeichnis

- Grundlagen
- Merton Firmenwertmodell

Idee: Merton Firmenwertmodell

$$V_{T}^{n} = V_{0}(1+n)$$

$$V_{T}^{n} = V_{0}(1$$

Merton Firmenwertmodell

- Firma hat Schulden modelliert durch Zero-Coupon Bond mit
 - Nominalbetrag F
 - Fälligkeit in T
 - Ausfall nur in T möglich
- ullet In T: Auszahlung an die Gläubiger hängt vom Firmenwert ab V_T

$$D_T = \min\{V_T, F\}$$

- Wenn $V_T < F$: Kreditausfall
 - \Rightarrow Loss given Default: $F V_T$
- Eigenkapitalgeber erhalten das Residuum:

$$E_T = V_T - D_T$$

$$= V_T - \min\{V_T, F\} \ge \max\{V_T - F; 0\}$$

 \Rightarrow Eigenkapital ist eine Call-option auf den Firmenwert mit Fälligkeit in T und Strike-Preis F!

Merton Firmenwertmodell

- Modelliere den Firmenwert analog zum Aktienkurs im Black-Scholes Modell (V ist lognormal)
- Bewertung des Eigenkapitals wie Call-Option auf den Firmenwert
 ⇒ Black-Scholes Formel liefert:

$$E_{0} = V_{0}\Phi(d_{1}) - Fe^{-rT}\Phi(d_{2})$$

$$d_{1} = \frac{\ln(V_{0}/F) + (r + 0.5\sigma^{2})T}{\sigma\sqrt{T}}$$

$$d_{2} = d_{1} - \sigma\sqrt{T}$$

$$O_{0} = V_{0} - E_{0}$$

 σ : Volatilität des Vermögens

• Eigenkapitalvolatilität:

$$\sigma_E = \sigma \frac{\partial E_0}{\partial V_0} \frac{V_0}{E_0}$$

Volatilität des Eigenkapitals

$$\nabla_{E} = \nabla_{A} \cdot \Phi(q^{1})$$

$$E = \nabla_{A} \cdot \Phi(q^$$

Merton Firmenwertmodell

- Schwächen des Modells:
 - V wird typischerweise nicht gehandelt (E nöglicherweise schon)
 ⇒ Woher kennen wir σ?
 - Firmen emittieren nicht einen Zero-Bond sondern viele Coupon-Bonds
 - unterschiedliche Laufzeiten der Kredite
- Aber ökonomische Implikationen sehr plausibel!
- Firmenwertmodell stellt die Grundlage vieler äußerst praxisrelevanter Modelle im Kreditriskomanagement (Moody's KMV Model, J.P. Morgans's Credit Metrics, ...)
- Alternative Modelle im Kreditriskomanagement: Credit Risk+

6 Inters tak mold