Capital Markets and Asset Pricing

Dr. Christoph Hambel

Goethe University Frankfurt & Goethe Business School Faculty of Business and Economics Department of Finance

Summer Term 2022

Part III

Option Pricing

Dr. Christoph Hambel (GBS) Capital Markets and Asset Pricing (CMAP)

Table of Contents

- State Pricing in a Nutshell
 - 2 An Example with Three States
 - 3 Binomial Trees
 - 4 Black-Scholes Model and Applications

- All we have seen so far holds under the assumption that there is no uncertainty.
- The framework from the previous chapter cannot deal with uncertainty about the timing and sizes of the payments.
- Examples:
 - Default of corporate bonds (credit risk)
 - Stock prices (uncertainty about dividend payments)
 - Derivatives
- Thus we need frameworks that can deal with uncertainty.
 - State Pricing: Taylor-made for credit risk, but also applicable for stock valuation and option pricing
 - Binomial Tree / Black-Scholes: Benchmark models for option pricing
 - CAPM / APT: Benchmark models for stock valuation

One-period State Pricing Model

- Two points in time $t \in \{0,1\} \Longrightarrow$ one period
- At t = 1 there are S different possible states.
- There are *N* assets (stocks, bonds) on the market, summarized in a payoff matrix *X*:

$$X = \begin{pmatrix} x_{1,1} & \cdots & x_{1,N} \\ \vdots & \ddots & \vdots \\ x_{5,1} & \cdots & x_{5,N} \end{pmatrix}$$

- $x_{s,n}$: Payoff of asset *n* in state *s* at t = 1
- S = 2: one-period binomial model, S = 3: one-period trinomial model.
- For illustration purposes, we will only consider N = 2, or N = 3.

• Prices of the assets at t = 0 summarized in a price vector

$$p = \begin{pmatrix} p_1 \\ \vdots \\ p_N \end{pmatrix}$$

• Problem: Find the price p_{N+1} of a new asset (e.g., an option) that is expressed by the following cash-flow vector:

$$\mathsf{CF} = \begin{pmatrix} \mathsf{CF}_1 \\ \vdots \\ \mathsf{CF}_S \end{pmatrix}$$

102 / 230

Illustrating Example

• Example for a model with N = 2 assets (stock and default-free zero bond) and S = 2 states (*up* and *down*):

• Therefore,

$$X = \begin{pmatrix} 120 & 100 \\ 80 & 100 \end{pmatrix}, \qquad p = \begin{pmatrix} 100 \\ 95 \end{pmatrix}.$$

- Price of an additional asset with payoff vector $CF = \begin{pmatrix} 100 \\ 60 \end{pmatrix}$?
- What could this asset represent? ightarrow

Illustrating Example

Replication

- Construct a portfolio that replicates the cash flow vector CF of the defaultable bond.
- According to the Law of One Price, the portfolio and the defaultable bond must have the same price.

State Price Securities

- Determine the Price of the so-called Arrow-Debreu securities, which pay \$1 if a certain state materializes.
- Use them to price the derivative.

How can one construct a replication portfolio?

Replication Portfolio

① The replication portfolio φ solves the linear system

 $X\varphi = CF$

 φ_n denotes the number of assets of type *n* in the portfolio.

2 The arbitrage-free price of the asset N + 1 is

$$p_{N+1} = p^{\top} \varphi$$

Each row in the linear system represents one state; each column one asset.

Illustrating Example: Replication

Replication Portfolio:

$$\begin{pmatrix} 120 & 100 \\ 80 & 100 \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = \begin{pmatrix} 100 \\ 60 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = \begin{pmatrix} 1.0 \\ -0.2 \end{pmatrix}$$

Arbitrage-free price of the derivative

$$p_3 = p_1\varphi_1 + p_2\varphi_2 \\ = 100 \cdot 1 + 95 \cdot (-0.2) \\ = 81$$

106 / 230

Dr. Christoph Hambel (GBS) Capital Markets and Asset Pricing (CMAP) Summer Term 2022

2nd Approach: State Price Securities

What is a state price security?

State Price Security

 An Asset x_s with price π_s, which pays exactly one dollar in state s and zero else is called a state price security or Arrow-Debreu security.

$$X^{\top}\pi = p$$

 π_s denotes the price of the state price security x_s (also known as Arrow-Debreu price).

2 The arbitrage-free price of the asset N + 1 is

$$p_{N+1} = \mathsf{C}\mathsf{F}^\top \pi$$

107 / 230

Each row in the linear system represents one asset; each column one state.

Illustrating Example: State Prices

• State Price Securities with prices π_u, π_d

$$\begin{pmatrix} 120 & 80 \\ 100 & 100 \end{pmatrix} \begin{pmatrix} \pi_u \\ \pi_d \end{pmatrix} = \begin{pmatrix} 100 \\ 95 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \pi_u \\ \pi_d \end{pmatrix} = \begin{pmatrix} 0.60 \\ 0.35 \end{pmatrix}$$

Arbitrage-free price of the derivative

$$p_3 = \mathsf{CF}_u \pi_u + \mathsf{CF}_d \pi_d$$
$$= 100 \cdot 0.6 + 60 \cdot 0.35$$
$$= 81$$

108 / 230

Dr. Christoph Hambel (GBS) Capital Markets and Asset Pricing (CMAP) Summer Term 2022

• The price of an asset with cash-flow CF_s in state s is given by

Pricing Rule
$$P_0 = \sum_{s=1}^{S} \mathsf{CF}_s \pi_s$$

• The price of the risk-free asset B with payoff 1 in every state is $B_0=\frac{1}{1+r},$ hence

Risk-free Asset

$$B_0 = \sum_{s=1}^{S} \pi_s, \qquad r = \frac{1}{\sum_{s=1}^{S} \pi_s} - 1$$

109 / 230

From State Pricing to Risk-neutral Pricing

• Does this procedure always lead to arbitrage-free prices?

No-arbitrage Condition

The market is free of arbitrage if and only if $\pi_s > 0$ for all states.

• Is replication always possible?

Completeness

Replication works if the market is complete. Rule of thumb: if the number of (independent) assets equals the number of states, then the market is complete and every security can be replicated.

• Example for an incomplete market?

From State Pricing to Risk-neutral Pricing

- Have the state price securities something to do with probabilities?
- Yes! But not with the real probabilities ...
- Define

$$q_s = \pi_s(1+r)$$

Risk-neutral Probabilities

If the market is free of arbitrage,

$$q_s > 0, \qquad \sum_{s=1}^S q_s = 1$$

form a set of probabilites, the so-called risk-neutral probabilities.

From State Pricing to Risk-neutral Pricing

• If the market is free of arbitrage, prices can be expressed as

$$P_0 = \sum_{s=1}^{S} \mathsf{CF}_s \pi_s = \sum_{s=1}^{S} \mathsf{CF}_s \frac{q_s}{1+r}$$

Consequently, prices can be expressed as discounted expected cash-flows!

Risk-neutral Pricing

$$P_0 = \sum_{s=1}^{S} \mathsf{CF}_s \frac{q_s}{1+r} = \frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}[\mathsf{CF}]$$

- This is a fundamental insight that holds in much more general markets!
- **1st Warning:** The risk-neutral probabilities are different from the real physical probabilities.
- **2nd Warning:** Investors are not risk-neutral, but prices are formed as if they were risk-neutral (but under **different probabilities**).

112 / 230

Example: Risk-neutral Pricing

Summary: State Pricing in a Complete Market

- State prices π_s are the prices for a security paying one dollar in state s and zero else.
- They can be determined by solving the linear system X^Tπ = p, which has a unique solution if and only if the market is complete.
- The market is free of arbitrage if and only if $\pi_s > 0$ for all states *s*. If the market is arbitrage-free, the risk-neutral probabilities exists and are compounded state prices, i.e., $q_s = \pi_s(1 + r)$.
- Given a vector of state prices π or risk-neutral probabilities q, the price of an asset with cash-flow vector CF is given by

$$P_0 = \sum_{s=1}^{S} \mathsf{CF}_s \pi_s = \sum_{s=1}^{S} \mathsf{CF}_s \frac{q_s}{1+r}.$$

Table of Contents

State Pricing in a Nutshel

- 2 An Example with Three States
 - Binomial Trees
 - 4 Black-Scholes Model and Applications

Table of Contents

1 State Pricing in a Nutshel

2 An Example with Three States

3 Binomial Trees

Black-Scholes Model and Applications

Structure of One Period

$$\begin{pmatrix}
S_{0} \\
S_{0} \\
B_{0}
\end{pmatrix} \xrightarrow{p_{u}} \begin{pmatrix}
S_{0} \cdot (1+u) \\
B_{0} \cdot (1+r)
\end{pmatrix} \\
\xrightarrow{P_{\alpha'}} \begin{pmatrix}
S_{0} \cdot (1+d) \\
B_{0} \cdot (1+r)
\end{pmatrix}$$

• Set
$$B_0 = 1$$
. Then:
 $X = \begin{pmatrix} S_0 \cdot (1+u) & 1+r \\ S_0 \cdot (1+d) & 1+r \end{pmatrix}, \quad p = \begin{pmatrix} S_0 \\ 1 \end{pmatrix}, \quad u > r > d$

• Determine the price C_0 of a derivative with payoff $C = \begin{pmatrix} C^u \\ C^d \end{pmatrix}$.

• One obtains

$$C_0 = \frac{1}{1+r} \cdot \left[C^u \underbrace{\frac{r-d}{u-d}}_{=q_u} + C^d \underbrace{\frac{u-r}{u-d}}_{=q_d} \right]$$

Dr. Christoph Hambel (GBS)

Capital Markets and Asset Pricing (CMAP)

- If we want to price financial derivatives, the one-period state pricing model is too simplistic.
- We extend the idea from the one-period model to a binomial tree.
- We consider trees with one stock S and one risk-free asset B.
- The risk-free rate is exogeneously given and denoted by r.
- In each period, the stock can either increase by *u* or decrease by *d*.
- We assume u > r > d. This condition ensures that the market is free-of arbitrage.
- The risk-neutral probability for an up-state is given by $q = q_u = \frac{r-d}{u-d}$.

122 / 230

Two-Period Model

Two-Period Model

• Node A:

$$C^{u} = \frac{1}{1+r} \left[qC^{uu} + (1-q)C^{ud} \right]$$

• Node B:

$$C^{d} = \frac{1}{1+r} \left[qC^{ud} + (1-q)C^{dd} \right]$$

• Node C:

$$C_0 = \frac{1}{1+r} \left[qC^u + (1-q)C^d \right]$$

$$\Rightarrow C_0 = \frac{1}{(1+r)^2} \left[q^2 C^{uu} + 2q(1-q)C^{ud} + (1-q)^2 C^{dd} \right]$$

124 / 230

Multi-Period Model: Binomial Coefficients

Multi-Period Model

• Extending this idea to an arbitrary number of periods leads to the following closed-form solution

$$C_0 = rac{1}{(1+r)^T} \sum_{i=0}^T inom{T}{i} q^i (1-q)^{T-i} C_T^{(i)}$$

where $\binom{T}{i} = \frac{T!}{i!(T-i)!}$ denotes the binomial coefficient. It counts the number of paths leading to node i. \rightarrow Pascal's triangle

• For a call option the terminal payoff is given by

$$C_T^{(i)} = (S_0 (1+u)^i (1+d)^{T-i} - K)^+$$

• For a put option the terminal payoff is given by

$$C_T^{(i)} = (K - S_0 (1 + u)^i (1 + d)^{T-i})^+$$

Example: Multi-Period Model

Table of Contents

- 1 State Pricing in a Nutshel
- 2 An Example with Three States
- 3 Binomial Trees
- 4 Black-Scholes Model and Applications

• Mathematically involved model in continuous time; stock price:

$$\mathrm{d}S_t = S_t \mu \mathrm{d}t + S_t \sigma \mathrm{d}W_t$$

- Wt Wiener process; normally distributed returns
- Interpretation for "small" time step Δt :

$$S_{t+\Delta t} - S_t = S_t \mu \Delta t + S_t \sigma \underbrace{(W_{t+\Delta t} - W_t)}_{\sim \mathcal{N}(0,\Delta t)}$$

- Idea: Start with a binomial model and increase the number of time steps in [0, *T*].
- In the limit the binomial model converges to the continuous Black-Scholes model.

Simulation of the Black-Scholes Model

Black-Scholes Formula

- A call (put) option with maturity at time T has the terminal payoff $C_T = \max\{S_T - K; 0\}, \qquad P_T = \max\{K - S_T; 0\}$
- In the more complicated Black-Scholes setting, its current price is given by

$$\mathcal{L}_0 = \mathbb{E}^{\mathbb{Q}}[C_T]e^{-rT}$$

• After some painful calculations, one obtains

Black-Scholes Formula

$$C_0 = S_0 \Phi(d_1) - K \cdot \mathrm{e}^{-rT} \Phi(d_2), \qquad P_0 = C_0 - S_0 + K \cdot \mathrm{e}^{-rT}$$

with

$$d_1 = \frac{\ln(S_0/K) + (r+0.5\sigma^2)T}{\sigma\sqrt{T}}, \qquad d_2 = d_1 - \sigma\sqrt{T}.$$

Example: Black-Scholes Formula

- Structure of a convertible bond
 - Fixed coupon payments at a rate c until maturity.
 - At maturity, the *buyer* of the convertible bond has the right (but not the obligation) to reclaim the notional N or to claim a number k of stocks of the emitting company, i.e., k · S_T.
- The buyer will claim the stocks if the stocks are worth more than the notional, k ⋅ S_T > N, i.e., if k ⋅ S_T N > 0.
 ⇒ Buyer holds a call option!
- Payoff structure:

with

$$\begin{array}{c|c|c|c|c|c|c|} time & 1 & 2 & \dots & T \\ \hline Cash flow & c & c & \dots & c+N+\max\{k \cdot S_T - N, 0\} \\ k = N/S_0 \end{array}$$

133 / 230

• Structure: guaranteed coupon payments + long call option.

• Structure of a convertible bond

- Fixed coupon payments at a rate c until maturity.
- At maturity, the *emitter* of the reverse convertible bond has the right (but not the obligation) to pay back the notional N or to deliver a number k of stocks, i.e., k · S_T.
- The emitter will deliver the stocks if the stocks are worth less than the notional, k ⋅ S_T < N, i.e., if N − k ⋅ S_T > 0.
 ⇒ Buyer is short in a put option!
- Payoff structure:

with

$$\begin{array}{c|c|c|c|c|c|c|} time & 1 & 2 & \dots & T \\ \hline Cash flow & c & c & \dots & c+N-\max\{N-k\cdot S_T,0\} \\ k=N/S_0 \end{array}$$

134 / 230

• Structure: guaranteed coupon payments – put option.

Critique: Black-Scholes Model

- Volatility, interest rate, expected return are assumed to be constant.
 → Volatility Smile
- Returns are assumed to be normally distributed. → Underestimation of extreme events.
- Model builds upon a complete market without frictions (no taxes, transaction costs, short-selling constraints, ...).
- Implied volatility \neq historical volatility
 - These caveats become visible if one investigates what volatilities are necessary to explain option prices by the Black-Scholes formula.
 - Implied volatility is not constant, but depends on K and T.
 - If the option is at-the-money, implied volatility is lowest (volatility smile).

135 / 230

Volatility Smile

