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Preferences 2015 2035 2055 2075 2095 2115 2150 2200

Benchmark 11.12 21.75 50.67 102.52 171.21 225.10 254.12 353.25
DICE 7.67 14.03 35.15 77.01 137.83 201.57 243.49 324.95
Stern 38.11 77.30 139.02 185.47 208.60 223.44 250.53 377.84

Table 13: SCC for Different Preference Specifications. The table compares SCC [$/tCO2] for
different preference specifications. The results are generated using the (G-N) damage specification. DICE
preferences are γ = 1.45, ψ = 1/γ, δ = 1.5%. Stern refers to γ = 1, ψ = 1, δ = 0.1%.

E Further Robustness Checks

E.1 Negative Net Emissions

This section studies a situation where negative net emissions are allowed to some extent. For

this purpose, we restrict the emission control rate between 0 and 1.2, i.e., we allow for neg-

ative emissions of up to 20% of BAU emissions, which is in line with Nordhaus (2017). The

main results are virtually unaffected by this assumption. The main difference is that the tight

abatement constraint imposed in the main text makes it harder to make up for opportunities

that were missed in the past. Therefore, if negative emissions are possible, society slightly delays

abatement activities. This effect already kicks in for moderate damages: For the Nordhaus dam-

age specification (L-N), the initial SCC is approximately 3% lower than in the benchmark case,

where negative emissions are not allowed. In the year 2115, however, the median SCC increases

by 4% and the 95% quantile of SCC is 11% higher than in the benchmark case. In extreme paths

with high temperatures, society must act much more drastically and reduces emissions below

zero, which boosts the SCC in such a situation. If damages are severe, this effect is much more

pronounced since extreme paths involves even stronger damages. For instance, in the Weitzman

damage specification (L-W), the initial SCC is 31% smaller. In the year 2115, the median SCC

increases by 11% and the 95% quantile of SCC is 17% higher than in the benchmark case.

E.2 Comparison with Standard Preference Choices

We now compare our benchmark preference structure with two specifications that are standard

in the literature. First, we consider a time-additive CRRA utility function with a risk aversion

parameter of γ = 1.45 and time-preference rate of δ = 1.5%. This utility specification is

used as benchmark specification in DICE. Earlier versions and other models use similar CRRA

specifications.42 Second, we simulate our model using a log-utility function (ψ = γ = 1) with a

very low discount rate (δ = 0.1%). Pindyck (2013), among others, argues that optimal abatement

policies crucially depend on the time-preference rate. In general, there is a lot of debate about

this parameter in the IAM literature. This is because time-preferences put implicitly weights on

42See, e.g., Nordhaus (2008), Pindyck (2012), Ackerman et al. (2011).
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Figure 11: Sensitivity Analysis for the Preferences. The graphs show the median paths of the
key variables for different preference specifications. Median optimal paths are depicted by solid lines and
median BAU paths by dotted lines. The benchmark scenario is depicted by black lines. Grey lines show
the DICE preference structure and light lines represent Stern discounting. Graph (a) shows the carbon
dioxide concentrations in the atmosphere, (b) median GDP growth rates, (c) median changes in global
temperature, (d) carbon dioxide emissions and the optimal emission control rates (dash-dotted lines).

the current and future generations: A higher value puts more weight on the current generation,

whereas a lower value shifts some of this weight to future generations. A tension arises since the

current generation is not as severely affected by the climate change as the future generations,

but must today decide upon an optimal abatement policy and pay for it. Of course, more

stringent actions reduce current consumption, but have far reaching consequences for future

generations who might benefit the most. We refer to the very low discount rate of δ = 0.1%

in combination with log-utility as Stern discounting since Stern (2007) suggests this preference

structure. Intuitively, with such a low rate of time-preference, real interest rates are lower and,

in turn, the social cost of carbon is higher. This also implies that society implements a very

stringent abatement policy.

Table 13 and Figure 11 summarizes our findings on how the preference structure affects our

results. With the standard DICE preference structure, both risk aversion and EIS are lower

which leads to a moderate abatement policy. The resulting evolution of median global warming

is in line with the results presented in Nordhaus and Sztorc (2013) although SCC is significantly

smaller. Stern discounting yields a very stringent abatement policy and a high social cost of

carbon. Following this policy reduces carbon dioxide emissions so that the median temperature
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Figure 12: Calibration of the Abatement Costs. The figure depicts the marginal abatement cost
(MAC) for the reference year 2030 (solid line). The prices of the y-axis are in 2005 euros. GtCO2e stands
for gigatons of carbon dioxide equivalents. The MAC function is calibrated such that it fits the positive
part of the McKinsey data (crosses).

increase peaks by the end of this century at 1.5◦C. Additionally, climate variability is significantly

dampened (not shown in the figure).

E.3 Alternative Abatement Costs

We now study the effects of using an alternative cost function κ. Instead of the benchmark spec-

ification, we derive an abatement cost function using the prognosis for the marginal greenhouse

gas abatement costs for the year 2030 provided by McKinsey and Company (2009, 2010).

Calibration The calibration is based on a prognosis for the marginal greenhouse gas abate-

ment costs for the year 2030 provided by McKinsey and Company (2009, 2010). For that year,

they estimate that under BAU the total emissions of greenhouse gases would reach 66GtCO2e

and analyze the expected abatement expenditures. Under rather optimistic assumptions, they

report an abatement potential of 38GtCO2e at a total cost of 150 billion euros. McKinsey

supposes that for 11GtCO2e of abatement the net costs are negative because savings from

implementing energy-efficient measures – compared to the BAU scenario – exceed the initial in-

vestment costs. To avoid issues arising from negative abatement costs, we follow Ackerman and

Bueno (2011) and disregard the negative part of the marginal costs. Therefore, our calibration

is more conservative than the McKinsey prognosis.
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In a first step, we fit the McKinsey data using the following functional form for the marginal

abatement cost function:

MAC(q) =
c1q

c2 + c3q + c4q2
.

The variable q is the absolute quantity of greenhouse gas abatement (measured in GtCO2)

compared to the business-as-usual scenario, i.e., the difference between BAU-emissions and

controlled emissions, q = EBAU − E. As can be seen in Figure 12, our estimates of ci fit the

positive part of the marginal abatement costs well (R2 > 0.96). The coefficients are c1 = 0.00039,

c2 = 0.0016, c3 = −3.25 · 10−5, c4 = −7.27 · 10−8. Then, we transform the marginal costs MAC

into (absolute) expenditures, which in our paper are denoted by X. We thus compute the anti-

derivative X(q) of the marginal costs with respect to q and evaluate X at the available data

points q1, . . . , qn. This yields values X1, . . . , Xn.

The resulting data points (q1, X1), . . . , (qN , XN ) can now be used to determine the cost func-

tion κ(t, ε) for the year 2030. Notice that the McKinsey data maps absolute quantities of

abatement q into marginal expenditures, whereas our cost function maps emission control rates

into reductions of economic growth. Therefore, we transform absolute quantities of greenhouse

gas abatement q into emission control rates using εi = qi/E
BAU, i = 1, . . . , N , and absolute

abatement expenditures X in relative expenditures by κi = Xi/E[Y ], i = 1, . . . , N , where E[Y ]

denotes the expected GDP in 2030. We assume the functional form (24) still to hold. We cali-

brate the parameters such that (24) is close to the data points (ε1,κ1), . . . , (εN ,κN ). As a result

of the calibration we obtain a = 0.035, b = 3.186 (R2 > 99%) for the year 2030. We take the

rate at which abatement becomes cheaper over time from DICE, i.e. the relative expenditures

for complete abatement (ε = 1) decline at rate of 1.48% to its long-term level of 0.043%. As a

result, we obtain a(t) = 0.0443 exp(−0.0148t) + 0.00043. Notice that the calibration based on

the McKinsey prognosis makes abatement slightly cheaper than in DICE since b is smaller.

Results for (G-N) Figure 13 depicts the median results for both cost specifications and

(G-N).43 It turns out that the results are similar. Implementing the McKinsey specification,

slightly raises the optimal abatement policy leading to lower carbon dioxide concentrations and

temperatures compared to the benchmark case. Therefore, net GDP growth is slightly higher and

SCC in the year 2015 is reduced from $11.12 to $10.05. Notice that, by the end of this century,

the optimal abatement activity becomes higher for the DICE cost function. This is because for

high emission control rates the marginal costs of the McKinsey calibration are higher than for

DICE since θ2 is higher (3.186 instead of 2.8). In turn, the marginal benefits from abatement

are lower when control rates are high.

43The results for (L-N) are similar and available from the authors upon request.
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Figure 13: Sensitivity Analysis for the Cost Function. The graphs show the median paths of
the key variables for different specifications of the cost function. Median optimal paths are depicted
by solid lines and median BAU paths by dotted lines. The benchmark scenario is depicted by black
lines. Grey lines show the results using McKinsey abatement costs. Graph (a) shows the carbon dioxide
concentrations, (b) median GDP growth rates, (c) median changes in global temperature, (d) carbon
dioxide emissions and the optimal emission control rates (dash-dotted lines).

F Solution Method

The optimization problem (16) cannot be solved explicitly.44 This appendix summarizes how

the problem can be solved numerically.

F.1 Hamilton-Jacobi-Bellman Equation

In case of a growth rate impact, the Hamilton-Jacobi-Bellman (HJB) equation reads

0 = sup
α,χ

{
Vt + y

(
g(t, χ)− ζdτn − κ(t, ε)

)
Vy +

1

2
y2σ2

kVyy +m(gm(t)− α)Vm +
1

2
m2σ2

mVmm

− δm(ms)mVms +
mητ

m+MPI

(
gm(t)− α

)
Vτ +

1

2

( στm

m+MPI

)2
Vττ +

m2

m+MPI
ρmτσmστVmτ

44Notice that closed-form solutions are only available in rare special cases. A prominent example is the com-
bination of log-utility, a Cobb-Douglas production technology and some further debatable assumptions as in
Golosov et al. (2014). As discussed in Section 5, log-utility is too restrictive for studying the effects of preference
parameters.
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+ ymρkmσkσmVym + yσkρkτ
στm

m+MPI
Vyτ + πτ (τ)

[
V (t, y,m,ms, τ + θτ )− V

]
+ f(χy, V )

}
.

(25)

Subscripts of the indirect utility function V denote partial derivatives (e.g., Vt = ∂V/∂t). The

corresponding HJB equation for a level impact can be found in Section F.3. First, we establish

the following separation result:

Lemma F.1. The indirect utility function of the optimization problem (16) has the form

V (t, y,m,ms, τ) =
1

1− γ
y1−γF (t,m,ms, τ), (26)

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft +m

[
gm(t)− α+ (1− γ)σkσmρkm

]
Fm +

1

2
m2σ2

mFmm + δm(ms)mFms (27)

+
mητ

m+MPI

[
gm(t)− α+ (1− γ)ρkτσkστ

]
Fτ +

1

2

( mστ
m+MPI

)2
Fττ

+
m2

m+MPI
ρmτσmστFmτ + (1− γ)

[
g(t, χ)− ζdτ − κ(t, εα)− 1

2
γσ2

k −
δ

1− 1/ψ

]
F

+ πτ (τ)
[
F (t,m,ms, τ + θτ (τ))− F

]
+ δθχ1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t,m, ·)−1

(
mFm + mητ

m+MPIFτ

(γ − 1)F

)
, (28)

and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θ = − ∂

∂χ
g(t, χ∗t ). (29)

Proof. Substituting the conjecture into the HJB equation yields the simplified HJB equation

(27). The representations of the optimal controls are then obtained by calculating the first-order

conditions. 2

The HJB equation cannot be simplified further. Therefore, we have to determine F by solving

equation (27) numerically. First, we consider a simplified problem where the capacity of natural

sinks is assumed to be unconstrained, i.e., the decay rate of carbon dioxide is assumed to be

constant at δm = δm(0). This provisional assumption makes the state variable M s redundant

and significantly simplifies the solution algorithm. In a second step, we address the general case.
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F.2 Numerical Solution Approach

Basic Idea We use a grid based solution approach to solve the non-linear PDE. We discretize

the (t,m, τ)-space using an equally spaced lattice. Its grid points are defined by

{
(tn,mi, τj) | n = 0, · · · , Nt, i = 0, · · · , Nm, j = 0, · · · , Nτ

}
,

where tn = n∆t, mi = i∆m, and τj = j∆τ for some fixed grid size parameters ∆t, ∆m, and

∆τ that denote the distances between two grid points. The numerical results are based on a

choice of Nm = 500, Nτ = 1000 and 1 time step per year. Our results hardly change if we use a

finer grid or more time steps per year. The parameters Nτ and Nm are chosen sufficiently large

such that it is very unlikely that these boundaries are reached within the given time horizon. In

the sequel, Fn,i,j denotes the approximated indirect utility function at the grid point (tn,mi, τj)

and αn,i,j refers to the corresponding optimal abatement policy. We apply an implicit finite

difference scheme.

Terminal Condition Since the optimization problem (16) has an infinite time horizon, we

must transform it into a problem with a finite horizon. Therefore, we approximate the indirect

utility function at some point tmax = Nt∆t in the distant future – we choose the year 2500 – by

the solution of a similar problem where the world is in a steady state: We assume that from time

tmax onwards the emission control rate is one, i.e., anthropogenic carbon dioxide emissions are

zero. To approximate the indirect utility function at the grid point (tmax,mi, τj), we simulate

sample paths for further 500 years and determine the utility index (14).

Finite Differences Approach In this paragraph, we describe the numerical solution ap-

proach in more detail. We adapt the numerical solution approach used by Munk and Sørensen

(2010).

The numerical procedure works as follows. At any point in time, we make a conjecture for the

optimal abatement policy α∗n,i,j . A good guess is the value at the previous grid point since the

abatement strategy varies only slightly over a small time interval, i.e., we set α∗n,i,j = αn+1,i,j .

Substituting this guess into the HJB equation yields a semi-linear PDE:

0 = Ft +K1F
1− 1

θ +K2F +K3Fm +K4Fmm +K5Fτ +K6Fττ +K7Fτm + πτF (t,m, τ + θτ )

with state dependent coefficientsKi = Ki(t,m, τ). Due to the implicit approach, we approximate

the time derivative by forward finite differences. In the approximation, we use the so-called
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’up-wind‘ scheme that stabilizes the finite differences approach. Therefore, the relevant finite

differences at the grid point (n, i, j) are given by

D+
mFn,i,j =

Fn,i+1,j − Fn,i,j
∆m

, D−mFn,i,j =
Fn,i,j − Fn,i−1,j

∆m
,

D+
τ Fn,i,j =

Fn,i,j+1 − Fn,i,j
∆τ

, D−τ Fn,i,j =
Fn,i,j − Fn,i,j−1

∆τ
,

D2
mmFn,i,j =

Fn,i+1,j − 2Fn,i,j + Fn,i−1,j

∆2
m

, D2
ττFn,i,j =

Fn,i,j+1 − 2Fn,i,j + Fn,i,j−1

∆2
τ

D+
t Fn,i,j =

Fn+1,i,j − Fn,i,j
∆t

, D2
τyFn,i,j =

Fn,i,j+1 − Fn,i−1,j+1 − Fn,i+1,j−1 + Fn,i−1,j−1

4∆τ∆m
.

We approximate the jump terms via linear interpolation between the closest grid points:

F (t,m, τ + θτ ) = kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

,

where θ̂τ1 and θ̂τ2 denote the closest grid points of τ + θτ . The variables kτ · denote the weights

resulting from linear interpolation. Substituting these expressions into the PDE above yields

the following semi-linear equation for the grid point (tn,mi, τj)

Fn+1,i,j
1

∆t
= Fn,i,j

[
−K2 +

1

∆t
+ abs

(
K3

∆m

)
+ abs

(
K5

∆τ

)
+ 2

K4

∆2
m

+ 2
K6

∆2
τ

]
+ Fn,i−1,j

[
K−3
∆m
− K4

∆2
m

]
+ Fn,i+1,j

[
−K

+
3

∆m
− K4

∆2
m

]
+ Fn,i,j−1

[
K−5
∆τ
− K6

∆2
τ

]
+ Fn,i,j+1

[
−K

+
5

∆τ
− K6

∆2
τ

]
+ Fn,i−1,j+1

K7

4∆τ∆m
+ Fn,i+1,j−1

K7

4∆τ∆m
− Fn,i+1,j+1

K7

4∆τ∆m
− Fn,i−1,j−1

K7

4∆τ∆m

+ πτ (kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

)−K1F
1− 1

θ
n,i,j .

Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This

results in a non-linear system of (Nm + 1)(Nτ + 1) equations that can be solved for the vector

Fn = (Fn,1,1, · · · , Fn,1,Nτ , Fn,2,1, · · · , Fn,2,Nτ , · · · , Fn,Nm,1, · · · , Fn,Nm,Nτ ).

Notice that in case of CRRA utility the system becomes linear. Using this solution we update

our conjecture for the optimal abatement policy at the current point in the time dimension. We

apply the first-order condition (28) and finite difference approximations of the corresponding

derivatives. In the interior of the grid, we use centered finite differences. At the boundaries, we
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apply forward or backward differences. For instance, for (i, j) ∈ {2, . . . , Nm−1}×{2, . . . , Nτ−1},
we compute the new guess as

α∗n,i,j = κα(tn,mi, ·)−1

(
(mi +MPI)∆τmi(Fn,i+1,j − Fn,i−1,j) + ∆mmi(Fn,i,j+1 − Fn,i,j−1)

∆m∆τ (mi +MPI)(γ − 1)Fn,i,j

)
.

Similarly, we compute the social cost of carbon for fixed GDP Y in the grid point (i, j) ∈{
2, . . . , Nm − 1

}
×
{

2, . . . , Nτ − 1
}

as

SCCn,i,j =
Y

1− γ
Fn,i+1,j − Fn,i−1,j

∆mFn,i,j

ξe
µm + δm − α∗n,i,j

.

With this new guess for the optimal policy we perform a new iterative step. We continue the

iteration until there is no significant change of the result. Then the algorithm continues with

the previous point tn−1 in the time directions until we reach the end of the grid.

Implementation of State-Dependent Sinks The solution procedure described so far does

not deal with state dependent sinks. Since in general the constraint (21) involves M s, we first

solve for the optimal abatement policy if the weaker constraint αt ≤ gm(t)+δm is imposed. The

corresponding abatement decision is then given by

αt = min

[
gm(t) + δm, κα(t,m, ·)−1

(
mFm + mη

m+MPIFτ

(1− γ)F

)]
.

Since the modified constraint is always weaker, we obtain an upper bound J(t, y,m,ms, τ) ≥
J(t, y,m,ms, τ) for the indirect utility function of the true model where (21) is imposed. Of

course, αt is not feasible in the true model. To obtain a feasible strategy, we thus define

αt = min [gm(t) + δm(M s
t ), αt] ,

where we cut off αt if it violates (21). Notice that the strategy αt is suboptimal. Since we have

the upper bound J , we can compute an upper bound on the loss that occurs if we implement

αt instead of the (unknown) optimal strategy. If J(t, y,m,ms, τ) denotes the indirect utility

associated with αt, the upper bound on the welfare loss is given by

J(t, y,m,ms, τ) = J(t, y(1− L),m,ms, τ).

It turns out that this upper bound for the welfare loss is significantly below 0.1% and thus the

strategy αt is close to optimal.
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Comparison with Value Function Iteration Most IAMs are formulated in discrete time.

The corresponding Bellman equation is usually solved by dynamic programming with value

function iteration (see, e.g., Crost and Traeger 2014; Traeger 2014; Cai and Lontzek 2015). The

main idea is as follows: One first discretizes the state space and chooses an appropriate func-

tional form to approximate the value function in those nodes. A typical choice are multivariate

orthogonal polynomials (e.g., Chebychev polynomials). Starting from the terminal date, one

iterates backwards through time. For every tn one pointwise maximizes the right-hand side of

the Bellman equation and determines the approximate value function in every node. Then the

algorithm goes step-by-step back in time until the end of the time grid is reached.

Since our model is formulated in continuous time, we derive and solve the corresponding Hamilton-

Jacobi-Bellman equation. This partial differential equation can be solved numerically by a grid-

based finite-differences approach as described above. Our method is thus the continues-time

analogue to discrete-time value function iteration. Notice that it is not necessary to make any

assumptions on the functional form of the value function.

F.3 Level Impact

Now, the dynamics of output dynamics are more involved than in the growth rate impact. It is

thus more convenient to use Ŷ = AK̂ as a state variable rather than Y . Its dynamics are given

by

dŶt = Ŷt

[
(g(t, χt)− κ(t, εαt ))dt+ σk(ρkmdWm

t + ρ̂kτdW τ
t + ρ̂kdW

k
t )
]

and output is thus

Y = Ŷ D(Tt).

Then, the HJB equation reads

0 = sup
α,χ

{
Vt + ŷ (g(t, χ)− κ(t, εα))Vŷ +

1

2
ŷ2σ2

kJŷŷ +m(gm(t)− α)Vm +
1

2
m2σ2

mJmm

− δm(ms)mVms + ŷmρkmσkσmVŷm +
mητ

m+MPI

(
gm(t)− α

)
Vτ +

1

2

( στm

m+MPI

)2
Vττ

+
m2

m+MPI
ρmτσmστVmτ + ŷσkρkτ

στm

m+MPI
Vŷτ + πτ (τ)

[
V (t, ŷ,m,ms, τ + θτ (τ))− V

]
+ f(ŷD(τ)χ, V )

}
.

Lemma F.1 is then modified as follows:
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Lemma F.2. The indirect utility function of the optimization problem has the form

J(t, ŷ,m,ms, τ) =
1

1− γ
ŷ1−γF (t,m,ms, τ),

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft +m

[
gm(t)− α+ (1− γ)σkσmρkm

]
Fm +

1

2
m2σ2

mFmm + δm(ms)mFms

+
mητ

m+MPI

[
gm(t)− α+ (1− γ)ρkτσkστ

]
Fτ +

1

2

( mστ
m+MPI

)2
Fττ

+
m2

m+MPI
ρmτσmστFmτ + (1− γ)

[
g(t, χ)− κ(t, εα)− 1

2
γσ2

k −
δ

1− 1/ψ

]
F

+ πτ (τ)
[
F (t,m,ms, τ + θτ (τ))− F

]
+ δθχ1−1/ψD(τ)1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t,m, ·)−1

(
mFm + mη

m+MPIFτ

(γ − 1)F

)

and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θD(τ)1−1/ψ = − ∂

∂χ
g(t, χ∗t ).
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